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This paper studies a speci�c dimension of the industrial structure - the dis-
tribution of �rms and production across sectors - by building an endogenous-
growth model of directed technical change that merges the expanding-variety
with the quality-ladders mechanism. By recognising the complementarity
between those two mechanisms within a full lab-equipment speci�cation,
the model generates a speci�c set of results, namely with respect to the
steady-state industrial structure of countries with di�erent levels of relative
labour endowment, and the relationship between structure, long-term aggre-
gate growth and R&D intensity.
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1. Introduction

The identi�cation of the determinants of industrial structure follow a long-standing tradi-
tion in industrial organisation (IO). In recognising the endogenous character of (many of)
those determinants, the literature has frequently emphasised the interrelation between
industrial structure, and technology and innovative activity (e.g., Dasgupta and Stiglitz,
1980; and Sutton, 1998).
Recently, a strand of the literature studies the interplay between long-term aggregate

growth, innovative activity and factors usually analysed in IO domain. Whereas some
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papers explore the interdependence between structure and growth, by focusing on the
strategic interaction of �rms in an oligopolistic framework (e.g., van de Klundert and
Smulders, 1997; Peretto, 1999; Aghion, Bloom, Blundell, Gri�th, and Howitt, 2005),
others emphasise the role of a speci�c factor within a monopolistic-competition setting -
e.g., the number of �rms (Peretto and Smulders, 2002), average �rm size (e.g., Peretto,
1998) or �rm size distribution (e.g., Thompson, 2001; Klette and Kortum, 2004).
This paper relates closely to the latter set of papers, while connecting endogenous

directed (or skill-biased) technical change literature (e.g, Acemoglu, 1998; Kiley, 1999;
Acemoglu and Zilibotti, 2001) with the study of long-term �rm dynamics and industrial
structure. In particular, it combines vertical and horizontal R&D and scale e�ects re-
lated with factor endowment to analyse the industrial structure, as characterised by the
number of (monopolistic) �rms, production and average �rm size across sectors. �Sector�
herein represents a group of �rms producing the same type of labour-complementary
intermediate goods: we follow the literature and dichotomise between unskilled-labour
complementary-technology sector and skilled-labour complementary-technology sector.
Figure 1, Appendix A, illustrates data with respect to the number of �rms, production,

average �rm size and R&D intensity in high-tech vis-à-vis low-tech sectors, as de�ned
by the OECD, across some developed countries. We take high-tech and low-tech sectors
as the empirical counterpart of the unskilled-labour and skilled-labour complementary-
technology sectors in our model (e.g., Cozzi and Impullitti, 2008). The data suggests
a considerable variability of industrial structures across countries, although some regu-
larities can be pointed out: (i) the number of �rms and total production are smaller in
the high-tech than in the low-tech sectors (relative number of �rms and relative produc-
tion below unity); (ii) average �rm size and R&D intensity are larger in the former; (iii)
relative production tends to be positively related to the relative number of �rms; (iv)
relative R&D intensity tends to be negatively related to relative �rm size.
There are several studies analysing the link between the distribution of economic ac-

tivity across industries and growth, either empirically (e.g., Fagerberg, 2000) or theoreti-
cally (e.g., Ngai and Pissarides, 2007; Bonatti and Felice, 2008; Acemoglu and Guerrieri,
2008). They derive the implications of di�erent sectoral total factor productivity (TFP)
growth rates, suggesting that countries specialized in �technologically progressive� in-
dustries (high TFP growth) enjoy higher growth rates.By analysing the same particular
dimension of industrial structure, our paper is related with this literature. However, by
building on a mechanism of endogenous directed technical change, it is substantially dif-
ferent. It predicts constant TFP growth rates across sectors along the balanced growth
path (see Acemoglu and Zilibotti, 2001). Thus, concerning the link between growth
and industrial structure, our results are set in quantitative terms, i.e., how many �rms
and how much production are allocated to each sector vis-à-vis the others, and not in
qualitative terms, i.e., in which speci�c sector is economic activity concentrated.
Our basic setup is an endogenous-growth model that merges the expanding-variety

with the quality-ladders mechanism, in line with, e.g., Dinopoulos and Thompson (1998)
and Howitt (1999). The main motivation behind these early models is the removal
of scale e�ects of population growth within a knowledge-driven R&D speci�cation. In
consequence, they predict that the steady-state �ow of new goods grows at the same
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(exogenous) rate as the population. We consider a full lab-equipment speci�cation, i.e.,
the input to R&D activities and to di�erentiated-goods production is the homogeneous
�nal good (e.g., Segerstrom and Zolnierek, 1999),1 which, despite the degree of scale-
e�ect removal, allows for a fully endogenous expanding-variety mechanism, such that the
�ow of new goods is independent of population growth.
Acemoglu (2002) observes that the consideration of horizontal or vertical R&D is

redundant for directed technical change. However, in line with Peretto and Connolly
(2007), we accommodate the view that vertical R&D allows for growth �unconstrained
by endowments�, while horizontal R&D permits an explicit link between aggregate and
industry-level variables (number of �rms, �rm size and entry rate). By recognising the
complementarity between those R&D types within a full lab-equipment speci�cation,
we �nd a speci�c set of results, namely regarding the industrial structure of countries
with di�erent relative labour endowment (the ratio between skilled and unskilled labour
measured in e�ciency units) and distinct degrees of scale e�ects.
The quality-ladders mechanism provides the accumulation of non-physical capital (tech-

nological knowledge), whilst the expanding-variety mechanism o�ers the �ow of new �rms
(new product lines). Average �rm size is thus measured as technological-knowledge stock
per �rm, which, however, relates closely to production (sales) per �rm or �nancial assets
per �rm. On the other hand, by identifying the feedbacks between structure, innova-
tive activity and growth performance, our general-equilibrium framework makes explicit
the endogenous determination of industrial structure, in line with the literature that
develops the �Schumpeterian hypotheses�. In particular, a subset of the technology pa-
rameters that determine R&D activity and aggregate growth rate simultaneously a�ect
the industrial structure and long-term industry dynamics.
In lab-equipment models, the scale e�ects are connected with the size of pro�ts that,

in each period, accrue to the incumbent; a larger market expands the incumbent's pro�ts
and, thus, the incentives to allocate resources to R&D, thereby increasing the aggregate
growth rate.2In our model, an increase in market scale also dilutes the impact of R&D
outlays on innovation probability (e.g., Barro and Sala-i-Martin, 2004), since coordina-
tion, organisational, informational, marketing and transportation costs (e.g., Dinopoulos
and Thompson, 1999) and rental protection actions by incumbents (e.g., Sener, 2008)
(positively) related to market size make the introduction of new intermediate goods and
the replacement of old ones increasingly di�cult as the market grows. However, depend-
ing on the e�ectiveness of the referred costs and actions, these may partial, totally or
over counterbalance the bene�ts of scale to innovative activity.
Accordingly, we allow for varying degrees of scale e�ects and, by focusing on the

steady state, �nd that, as the degree of scale e�ects changes, the industrial structure
associated to a given level of relative labour endowment may di�er signi�cantly. Likewise,
the relationship between industrial structure and both R&D intensity (a version of the

1Using Rivera-Batiz and Romer (1991)'s terminology, the assumption that �nal good is the R&D
input means that one adopts the �lab-equipment� version of R&D, instead of the �knowledge-driven�
speci�cation, in which labour is the only input.

2The basic theory of industrial structure in IO literature suggests that concentration is determined by
economies of scale relative to the market size. In our model, the role of market size is quite di�erent.
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�Schumpeterian hypothesis�) and long-term aggregate growth may depend on the given
combination between scale e�ects and relative labour endowment. By generating a wide
set of results, our model hence provides a possible economic mechanism to explain the
empirical facts in Figure 1.
The remainder of the paper has the following structure. In Section 2, we give an

overview of the model of directed technological change with quality ladders and horizontal
entry. Section 3 presents the general equilibrium and analyses the steady-state properties
of the model. In Section 4, we detail the comparative steady-state results, namely with
respect to the degree of scale e�ects and the level of relative labour endowment. Section
5 gives some concluding notes.

2. The model

2.1. Production and price decisions

This is a model of directed technological change with quality ladders and horizontal en-
try, built into a dynamic general equilibrium setup of a closed economy where there is a
single competitively-produced �nal good, Y , that can be used in consumption, C, pro-
duction of intermediate goods, X, and R&D activities, R. The �nal good is produced by
a continuum of �rms, indexed by n ∈ [0, 1], each using labour and a continuum of inter-
mediate inputs indexed by ω ∈ [0, N(t)]. Aggregate output (in terms of the composite

�nal good) is de�ned as Y (t) =
∫ 1
o P (n, t)Y (n, t)dn = exp

[∫ 1
o lnY (n, t)dn

]
. We treat

the composite �nal good as numeraire and normalise its price to unity in each period,

such that exp
[∫ 1

0 lnP (n)dn
]

= PY = 1. For concreteness, assume that, as in Acemoglu

and Zilibotti (2001), there are two types of intermediate goods - one is unskilled-labour
complementary and the other is skilled-labour complementary -, such that each interme-
diate good can be used either only by unskilled workers or by skilled workers. The two
technological groups enter the �nal-good production function as speci�ed below

Y (n, t) = A

[∫ NL(t)

0

(
λjL(ω,t) · xL(n, ω, t)

)1−α
dω

]
[(1− n) · l · L(n)]α +

+A

[∫ NH(t)

0

(
λjH(ω,t) · xH(n, ω, t)

)1−α
dω

]
[n · h ·H(n)]α (1)

where A > 0 is a given scale parameter; L and H are unskilled and skilled labour,
respectively; and, as in Afonso (2006), xm(n, ω, t) is the amount used by �nal-good �rm
n of the m-complementary (m = L,H) intermediate good ω, weighted by its quality level
λjm(ω,t). It is implicit in (1) that only the highest grade of each ω ∈ [0, NL(t)]∪ [0, NH(t)]
are actually produced and used in equilibrium, meaning xm(j, ω, t) = xm(ω, t);3 thus,
Nm(t) > 0 is the measure of how many di�erent m-complementary intermediate goods ω
exist at time t, such that NL(t) +NH(t) = N(t). The contribution of the speci�c labour

3Henceforth, we use explicitly all arguments (j, ω, t) when they are useful for convenience of exposition.
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inputs are condensed by the terms with exponent 0 < α < 1. These terms include two
corrective factors for productivity di�erentials. An absolute productivity advantage of
high over low-skilled labour is captured by h > l > 1. A relative productivity advantage
of either type is obtained by n and (1�n): high-skilled labour is relatively more productive
in �nal goods indexed by larger n, and vice-versa. As explained below, at each t there
is a competitive equilibrium threshold �nal good n̄, endogenously determined, where the
switch from one technology to the other becomes advantageous, so that each �nal good
is produced exclusively with one technology, either high or low.
For the time being, we take Nm as given and follow Acemoglu and Zilibotti (2001)'s

derivations from close. Each �rm n in the �nal-good sector seeks to maximise pro�t by
solving

max
{x(n,ω,t),ω∈[0,NL(t)]∪[0,NH(t)]},L(n),H(n)

P (n, t) · Y (n, t)− wL(t) · L(n)− wH(t) ·H(n)−

−
∫ NL(t)

0
pL(ω, t) · xL(n, ω, t)dω −

∫ NH(t)

0
pH(ω, t) · xH(n, ω, t)dω (2)

where P (n, t), the price of the �nal good sold by n, pm(ω, t), the price ofm-complementary
ω, and wm(t), the labour wage of m at t are taken as given by n. The solution to this
problem implies that the demand for ω is

xL(n, ω, t) = (1− n) · l · L(n) ·
[
A·P (n,t)·(1−α)

pL(ω,t)

] 1
α
λj(ω,t)(

1−α
α )

xH(n, ω, t) = n · h ·H(n) ·
[
A·P (n,t)·(1−α)

pH(ω,t)

] 1
α
λj(ω,t)(

1−α
α )

(3)

Given (1) and (3), �nal-good output is

Y (n, t) = A
1
α ·P (n, t)

1−α
α ·
(

1− α
p(ω, t)

) 1−α
α

· [(1− n) · l · L(n) ·QL(t) + n · h ·H(n) ·QH(t)]

(4)
where

Qm(t) =
∫ Nm(t)

0
λjm(ω,t)( 1−α

α )dω (5)

is the intermediate-input aggregate quality index, or the technological-knowledge stock,
for the technology group m = L,H. In (4), we have considered pm(ω, t) ≡ p(ω, t), as
shown below.
The intermediate good is nondurable and entails a unit marginal cost of production,

measured in terms of �nal-good output Y . Since there is a continuum of intermediate
goods, one can assume that �rms are atomistic and take as given the price of �nal out-
put (numeraire). Monopolistic competition, therefore, prevails and �rms face isoelastic
demand curves Xm(ω) =

∫ 1
0 xm(n, ω)dn (see (3)). Leading-edge m-complementary ω

producers choose their prices pm(ω, t) to solve the pro�t maximization problem
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max
pm(ω,t)

(pm(ω, t)− 1) ·Xm(ω, t) (6)

Solving the �rst-order condition yields the optimal intermediate-good price

pm(ω, t) ≡ p =
1

1− α
(7)

which, since 0 < α < 1, is the usual monopoly price markup, constant over time and
across industries.
Each m-complementary intermediate good is potentially sold to every n ∈ [0, 1]. How-

ever, it can be shown that there is a threshold n̄ that divides the mass of �nal-good
�rms into two groups, such that 0 ≤ n ≤ n̄ employs L-complementary x and n̄ < n ≤ 1
employs H-complementary x (see Acemoglu and Zilibotti, 1999). Given (7), we can then
write the �nal-good output as

Y (n, t) =

A
1
αP (n, t)

1−α
α · (1− α)

2(1−α)
α · (1− n) · l · L(n) ·QL(t) , 0 ≤ n ≤ n̄

A
1
αP (n, t)

1−α
α · (1− α)

2(1−α)
α · n · h ·H(n) ·QH(t) , n̄ ≤ n ≤ 1

(8)

The equalisation of the marginal value product ∂(P (n)Y (n))
∂m(n) over n ∈ [0, n̄] (for L) and

over n ∈ [n̄, 1] (for H), in equilibrium, implies P (n, t)
1
α · (1 − n) and P (n, t)

1
α · n must

be constant over n ∈ [0, n̄] and n ∈ [n̄, 1], respectively. Thus, de�ne the �nal-good price
indeces

PL(t)
1
α = P (n, t)

1
α · (1− n)

PH(t)
1
α = P (n, t)

1
α · n

(9)

constant over n ∈ [0, n̄] and n ∈ [n̄, 1], respectively. Also, given Cobb-Douglas technology,
expenditures across �nal goods are equalised (i.e., P (n)Y (n) is constant over n), which
implies L(n) and H(n) constant over n ∈ [0, n̄] and n ∈ [n̄, 1], respectively. Thus, we
have the following labour-market clearing conditions∫ n̄

0 L(n)dn = L⇔ L(n) = L
n̄∫ 1

n̄ H(n)dn = H ⇔ H(n) = H
1−n̄

(10)

On the other hand, by solving (9) in order to P (n) and noting that, in sector n̄, a �rm
that uses unskilled workers and a �rm that uses skilled workers should break even, we
have, for n = n̄,4

PH
PL

=
(

n̄

1− n̄

)α
(11)

Again, since P (n) · Y (n) is constant over n, then PH · Y (1) = PL · Y (0). Given Y (1),
Y (0), (10) and (11), we get

4Henceforth, we suppress time indexes when this causes no confusion.
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PH
PL

=
(
lLQL
hHQH

)α
2

(12)

and

n̄ =

[
1 +

(
hHQH
lLQL

) 1
2

]−1

(13)

Having in mind the numeraire rule exp
[∫ 1

0 lnP (n)dn
]

= PY = 1, some algebraic manip-

ulation of the latter together with (11) and (13) yields

PL = e−αn̄−α = e−α
[
1 +

(
hHQH
lLQL

) 1
2

]α
PH = e−α(1− n̄)−α = e−α

[
1 +

(
hHQH
lLQL

)− 1
2

]α (14)

With respect to aggregate quantities, see that, given (3), (7), (9) and the de�nition of
Xm(ω), the optimal intermediate-good production for ω is

XL(ω) =
∫ n̄

0 xL(n, ω)dn = A
1
α · (1− α)

2
α · P

1
α
L · l · L · λ

jL(ω)( 1−α
α )

XH(ω) =
∫ 1
n̄ xH(n, ω)dn = A

1
α · (1− α)

2
α · P

1
α
H · h ·H · λ

jH(ω)( 1−α
α )

(15)

Given (15), the optimal pro�t accrued by intermediate-good sector monopolists is

πL(ω) = π̄L · P
1
α
L · λ

jL(ω)( 1−α
α )

πH(ω) = π̄H · P
1
α
H · λ

jH(ω)( 1−α
α )

(16)

where π̄L ≡ lLA
1
α

(
α

1−α

)
(1− α)

2
α and π̄H ≡ hHA

1
α

(
α

1−α

)
(1− α)

2
α are positive con-

stants. Observe that πm(ω) jumps every time quality is upgraded in m-complementary
ω, but changes continuously with Pm, as the dynamics of the latter re�ects the contin-
uum of jumps at the aggregate of industries.5 Also from (15) and the de�nition of X,
we see that the total intermediate-good optimal production is

X ≡ XL +XH ≡
∫ NL

0
XL(ω)dω +

∫ NH

0
XH(ω)dω =

= A
1
α · (1− α)

2
α ·
[
P

1
α
L · l · L ·QL + P

1
α
H · h ·H ·QH

]
(17)

From (8), (9)- and the de�nition of Y , we �nd the total �nal-good optimal production

5The uncertainty associated with vertical R&D at the industry level creates jumpiness in microeconomic
outcomes. However, as we see in Subsection 2.2, below, as the probabilities of successful R&D across
industries are independent and there is a continuum of industries, this jumpiness is not transmitted
to macroeconomic variables, which hence can be treated as following a continuous non-stochastic
time path.
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Y ≡ YL + YH ≡
∫ n̄

0
P (n)Y (n)dn+

∫ 1

n̄
P (n)Y (n)dn =

= A
1
α · (1− α)

2(1−α)
α ·

[
P

1
α
L · l · L ·QL + P

1
α
H · h ·H ·QH

]
(18)

Finally, we can use (18), together with (14), to compute the skill premium as

wH
wL

=
h

l

(
hH

lL

)− 1
2
(
QH
QL

) 1
2

(19)

where wL = ∂Y
∂L and wH = ∂Y

∂H .

2.2. R&D decisions

In line with Gil, Brito, and Afonso (2008), we assume that, in the intermediate-good
sector, �rms can devote resources to R&D either to create a new product line (a new
industry) or, within an existing industry ω, to improve the quality of its good.

Vertical R&D free-entry and dynamic arbitrage conditions

As in the standard model of quality ladders, �rms decide over their optimal vertical-R&D
level, which constitutes the search for new designs (blueprints) that lead to a higher
quality of existing intermediate goods. Each new design is granted a patent, meaning
that a successful researcher retains exclusive rights over the use of his/her improved
intermediate good. In each industry only (potential) entrants can do R&D and innovation
arrival follows a Poisson process. There is free entry into each vertical R&D race and
each entrant possesses the same R&D technology. Since there is perfect competition
among entrants, the individual contribution of any particular entrant to the aggregate
R&D expenditures of all entrants is negligible.6

Let Iim(j, ω, t) denote the instantaneous probability of R&D success by potential en-
trant i in m-complementary industry ω when the highest quality is j (I is also inter-
preted as the vertical innovation rate). This probability is independently distributed
across �rms, industries and over time, and depends on the �ow of resources Rivm(j, ω, t)
devoted to R&D by entrants in each m-complementary ω at t (measured in units of
�nal-good output Y ). As in, e.g., Barro and Sala-i-Martin (2004, ch. 7), we assume that
each entrant's instantaneous probability of R&D success is given by a relation exhibit-
ing constant returns in R&D expenditures, Iim(j, ω, t) = Rivm(j, ω, t) · Φm(j, ω, t), where

6Zero equilibrium R&D by incumbents is a well-known result claimed by the traditional quality-ladders
models (e.g., Aghion and Howitt, 1992). However, as shown by Cozzi (2007a), the assumption of
R&D �rms (potential entrants and the incumbent) operating under perfect competition and constant
returns at the �rm level, taken rigorously, �yields an indeterminate investment for the incumbent,
thereby predicting that incumbents should invest randomly�, which is consistent with the latter doing
any amount of R&D, from zero to a very large number. Our assumption of zero equilibrium R&D
by incumbents is only for the sake of simplicity in what regards the microstructure of our model.

8



the function Φ is the same for every �rm in ω and captures the e�ect of the current
technological-knowledge position j. Now, let us de�ne

ΦL(j, ω, t) ≡ 1
ζ (lL)−ε λ−(jL(ω,t)+1)( 1−α

α )

ΦH(j, ω, t) ≡ 1
ζ (hH)−ε λ−(jH(ω,t)+1)( 1−α

α ) (20)

where ζ > 0 is a constant that stands for the (�ow) �xed vertical-R&D cost (for simplicity,
we assume ζL ≡ ζH ≡ ζ) and ε ≥ 0 is a parameter that allows for a varying degree of
scale-e�ects removal associated to the size of the labour force measured in e�ciency
units. We assume that an increase in market scale dilutes the e�ect of R&D outlays on
innovation probability, in line with, e.g., Barro and Sala-i-Martin (2004), capturing the
idea that the di�culty of introducing new intermediate goods and replacing old ones is
proportional to the size of the market, measured by labour employed. The reasons this
may happen are coordenation, organisational and transportation costs (e.g., Dinopoulos
and Thompson, 1999) or rental protection actions by incumbents (e.g., Sener, 2008),
also expected to be proportional to market size. One can conceive ε within any range
in the interval [0,∞), depending on whether the bene�ts of scale, connected to the
size of pro�ts that accrue to the incumbent each t (see (16)), are either not a�ected
(ε = 0) or are partial (0 < ε < 1), totally (ε = 1) or over (ε > 1) couterbalanced
by the referred costs and rental protection actions associated to market size. Also,
implicit in (20) is the assumption of dynamic decreasing returns to scale to vertical
R&D (i.e., decreasing returns to cumulated R&D).7,8By aggregating across �rms in ω,
we get Rvm(j, ω, t) =

∑
iR

i
vm(j, ω, t) and Im(j, ω, t) =

∑
i I
i
m(j, ω, t), such that (shown

for m = L)

IL(j, ω, t) = RvL(j, ω, t) · 1
ζ
· (lL)−ε · λ−(jL(ω,t)+1)( 1−α

α ) (21)

From (21), we can aggregate across ω to get the total resources devoted to vertical R&D,
Rvm(t), for a given Nm(t), (for m = L)

RvL(t) =
∫ NL(t)

0
RvL(j, ω, t)dω =

∫ NL(t)

0
ζ · (lL)ε · λ(jL(ω,t)+1)( 1−α

α ) · IL(j, ω, t)dω (22)

7The speci�c way Φ depends on j implies that the increasing di�culty of creating new product genera-
tions over time exactly o�sets the increased rewards from marketing higher quality products; see (20)
and (16). This allows for constant probability over time and across industries in balanced-growth
path, i.e., a symmetric equilibrium (on asymmetric equilibrium in quality-ladders models and its
growth consequences, see Cozzi, 2007b).

8Sener (2008) contrasts the e�ects of rental protection actions with the expanding variety and the
dynamic decreasing returns to R&D as scale-removal mechanisms within a quality-ladders model with
knowledge-driven R&D speci�cation. Observe, however, that the dynamic decreasing returns to R&D,

as �rst introduced by Segerstrom (1998), and represented in our model by the term λ−(jL(ω,t)+1)( 1−α
α )

in (20), are neither necessary nor su�cient for the purpose of scale removal in a model of lab-
equipement speci�cation as our own (though it plays a crucial role in guaranteeing a Poisson rate
constant over ω and hence the existence of a symmetric equilibrium; see fn. 7, above). The same
applies to the expanding variety mechanism, as it is clear if we let ε = 0 in our results below.
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Taking Im(j, ω, t) as given, it de�nes the probability of the incumbent losing his
monopoly position. Thus, the present value of an incumbent's pro�ts is a random variable
because the terminal date to the monopoly of �rm i arrives with probability Im(j, ω, t)
per (in�nitesimal) increment of time. Let Vm(j, ω, t) denote the expected discounted
value of pro�ts earned by a monopolist when the highest quality in m-complementary ω
is j.9 V can be interpreted as the market value of the patent or the value of the monop-
olist �rm owned by households. The expected discounted value of pro�ts can be written
as Vm(j, ω, t) =

∫∞
t πm(j, ω, t)e−

∫ s
t (r(v)+Im(j,ω,v))dvds, where r is the equilibrium market

real interest rate and πm(j, ω, t) is given by (16). The equation above re�ects the fact
that, if a pro�t �ow can stop when a Poisson event with arrival rate I occurs, then we
can calculate the expected present value of the stream of pro�t as if it never stops, but
adding I to the discount rate. Thus, we can interpret r+ I as an e�ective discount rate.

Since πmP
− 1
α

m is constant in-between innovations, we can further write

Vm(j, ω, t) = π̄mλ
jm(ω,t)( 1−α

α )
∫ ∞
t

Pm(t)
1
α e−

∫ s
t (r(v)+Im(j,ω,v))dvds (23)

Now, consider the average m-complementary intermediate-good sector, ω̄, for a given
Nm(t).10 Average resources devoted to vertical R&D, Rvm(j, ω̄, t) = Rvm(t)

Nm(t) , can be put

into (21) to yield an expression for the probability of vertical innovation for ω̄, Im(j, ω̄, t).
With free-entry into the vertical R&D business, we have the free-entry condition

Im(j, ω̄, t) · Vm(j + 1, ω̄, t) = Rvm(j, ω̄, t) (24)

By substituting (23) into (24), we get

Im(j, ω̄, t) · π̄m · λjm(ω,t)( 1−α
α )
∫ ∞
t

Pm(t)
1
α · e−

∫ s
t (r(v)+Im(j,ω,v))dvds = Rvm(j, ω̄, t) (25)

whilst time-di�erentiating (25), bearing in mind Leibniz's rule, yields (henceforth, the
dot denotes time derivative)

r(t) + Im(j + 1, ω̄, t) =
πm(j + 1, ω̄, t) · Im(j, ω̄, t)

Rvm(j, ω̄, t)
−

−

(
π̇m(j + 1, ω̄, t)
πm(j + 1, ω̄, t)

− 1
α

Ṗm(t)
Pm(t)

)
− İm(j, ω̄, t)
Im(j, ω̄, t)

+
Ṙvm(j, ω̄, t)
Rvm(j, ω̄, t)

(26)

This can be interpreted as an arbitrage condition, which equates the e�ective rate of

return on capital (i.e., the market rate of return augmented by the Poisson arrival rate)

9We assume that entrants are risk-neutral and, thus, only care about the expected value of the �rm.
10The usual procedure in the quality-ladders literature is to consider the average intermediate-good

sector in order to avoid any jumpiness in quality levels that would occur if the behaviour of an
individual sector were contemplated.
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to the rate of return on vertical R&D, where the latter equals the pro�t rate earned by

setting up now a new �rm with an existing intermediate good of improved quality minus

the increase in the pro�t rate due to the next innovation in that intermediate good (which
is accrued to the next innovator).11As a result of (16) and (21) applied to ω̄, we have,
after time di�erentiation,

π̇m(j + 1, ω̄, t)
πm(j + 1, ω̄, t)

=
π̇m(j, ω̄, t)
πm(j, ω̄, t)

= Im(j, ω̄, t) ·
[
j̇m(ω̄, t) ·

(
1− α
α

)
· lnλ

]
+

1
α

Ṗm(t)
Pm(t)

(27)

and

Ṙvm(j, ω̄, t)
Rvm(j, ω̄, t)

=
İm(j, ω̄, t)
Im(j, ω̄, t)

+ Im(j, ω̄, t) ·
[
j̇m(ω̄, t) ·

(
1− α
α

)
· lnλ

]
(28)

Hence, given (28) and (27), we can rewrite (26) as

r(t) + Im(j + 1, ω̄, t) =
πm(j + 1, ω̄, t) · Im(j, ω̄, t)

Rvm(j, ω̄, t)
(29)

Substituting (16) and (21) in the right-hand side of (29), and following the same steps
for m = H, yields

r(t) = π̄L·PL(t)
1
α

ζ·(lL)ε
− IL(j + 1, ω̄, t)⇔ r(t) = π̄·(lL)1−ε·PL(t)

1
α

ζ − IL(t)

r(t) = π̄H ·PH(t)
1
α

ζ·(hH)ε
− IH(j + 1, ω̄, t)⇔ r(t) = π̄·(hH)1−ε·PH(t)

1
α

ζ − IH(t)
(30)

where π̄ ≡ π̄L
lL = π̄H

hH . According to (30), the relationship between r and Im is independent
of t, ω, and j, implying Im(t) ≡ Im(j + 1, ω̄, t). Thus, if Im is constant over time, then
r is also constant.

Horizontal R&D free-entry and dynamic arbitrage conditions

Variety expansion results from R&D aimed at creating a new intermediate-good line,
corresponding to a new �rm, at a cost of η units of �nal output. In particular, we view
the creation of new product lines as a product development activity without positive
spillovers and allow for entry as well as exit of product lines from the market - that is,
we do not assume irreversibility of investment in product development.
After a new product is launched, an initial quality level is observed, drawn at ran-

dom from the distribution of quality indexes matching the existing product lines. Let

qm(j, ω, t) ≡ λjm(ω,t)( 1−α
α ) be an alternative measure of product quality in the technology

group m = L,H.Then, from (5), we have

Qm(t) =
∫ Nm(t)

0
qm(j, ω, t)dω = qm(j, ω̄, t) ·Nm(t) (31)

11In (26), π̇m
πm

(as well as Ṙvm
Rvm

and İm
Im

) must be interpreted in expected terms, since it re�ects the
stochastic process of innovation arrival.
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where qm(j, ω̄, t) ≡ Eω(qm) is the average of q over industries.12 Assume perfect com-
petition among R&D �rms and constant returns to scale at the �rm level, such that
Ṅ e
m(t) = 1

η · R
e
hm(t), where Ṅ e

m(t) is the contribution to the instantaneous �ow of new
m-complementary intermediate goods by innovator �rm e and Rehm(t) is the �ow of re-
sources devoted to horizontal R&D by e at t (measured in units of �nal-good output Y ).
The cost ηm is the same for every �rm doing horizontal R&D in the m-complementary
sector. Next, aggregate across �rms to get Rhm(t) =

∑
eR

e
hm(t) and Ṅm(t) =

∑
e Ṅ

e
m(t),

which implies that the total �ow of resources devoted to horizontal R&D is

Rhm(t) = ηm · Ṅm(t) (32)

Since entry also generates value Vm(qm(j, ω̄, t)) ≡ Vm(j, ω̄, t), a free-entry equilibrium
requires that new product lines are created (or destroyed) at a rate Ṅm necessary to
ensure that

Ṅm(t) · Vm(j, ω̄, t) = Rhm(t)⇔ Vm(j, ω̄, t) = ηm (33)

Henceforth, we explore the case where ηm is time-varying. In particular, let

ηm ≡ η(Nm, Rhm) = ϕ1(Nm) · ϕ2(Rhm) (34)

where ϕ1(·) and ϕ2(·) are positive, invertible functions. This speci�cation of the entry
cost function merges the one suggested by Romer (1990) and Barro and Sala-i-Martin
(2004, ch. 6) (through the �rst term in the right-hand side of (34)), by which the en-
try cost increases with the number of di�erentiated goods in the market, thus implying
decreasing returns to cumulated horizontal R&D, with the one by Howitt (1999) (the
second term), where the aggregate function of horizontal innovation exhibits decreasing
marginal returns in the total �ow of horizontal R&D.13 Let ϕ1(Nm) = ψNm(t)ν1 and
ϕ2(Rhm) = Rhm(t)ν2 , where the parameter ψ > 0 stands for a (�ow) �xed horizontal-
R&D cost, ν1 > 0 measures the negative spillover e�ect related to the accumulation of
intermediate-good varieties, whilst 0 < ν2 < 1 measures the degree of the increasing
returns of the marginal horizontal innovation function, ϕ2(Rhm)−1 (for simplicity, we as-
sume the parameters take the same values in the two technology groups). By substituting
(32) in (34), we arrive at

12Hence, from (15) and (16), we have Xm(qm(j, ω̄, t)) ≡ Xm(j, ω̄, t) and πm(qm(j, ω̄, t)) ≡ πm(j, ω̄, t).
13The dependence of η on Rh implies (static) decreasing returns to scale to horizontal R&D at the

aggregate level, but which we assume to be entirely external to the �rm, and hence compatible with
the previous assumption of constant returns to scale at the �rm level. This is a departure from Howitt
(1999) (see also Segerstrom, 2000) - who assume decreasing returns to scale to R&D at the �rm level
- but is in line with, e.g., Arnold (1998). On the other hand, observe that the dynamic decreasing
returns to scale to horizontal R&D due to the dependence of η on N parallel the dynamic decreasing
returns to vertical R&D due to the dependence of Φ on λj (see (20); also note, from (24), that free

entry in vertical R&D implies V = 1
Φ
) or, more precisely, of

∫ N(t)

0
Φ(j, ω, t)dω on q(j, ω̄, t)N(t) = Q(t),

as shown below (see (38)).
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η(·) = ψ·Nm(t)ν1 ·
(
η(·) · Ṅm(t)

)ν2

⇔ η(·) = ψ
1

1−ν2 ·Nm(t)
ν1

1−ν2 ·Ṅm(t)
ν2

1−ν2 = φ·Nm(t)σ·Ṅm(t)γ

(35)

where φ ≡ ψ
1

1−ν2 > 0, σ ≡ ν1
1−ν2

> 0 and γ ≡ ν2
1−ν2

> 0. Equation (35) shows the link
between our speci�cation of the horizontal entry-cost function with respect to Rh and
that used by Datta and Dixon (2002) and Brito and Dixon (2008), where the entry cost
increases with the number of goods entering the market at a given instant, Ṅ .14This
mechanism, which introduces dynamic second-order e�ects in entry, is also similar to
the one that characterises the changes of the physical-capital stock in the literature of
�rm investment with convex adjustment costs, where the cost of installing (dismantling)
capital increases with the amount of investment (disinvestment) at a given instant (e.g.,
Eisner and Strotz, 1963).
By substituting (23) into (33), where ηm is a time-varying function, we have

π̄m · λjm(ω,t)( 1−α
α ) ·

∫ ∞
t

Pm(t)
1
α · e−

∫ s
t (r(v)+Im(j,ω,v))dvds = ηm (36)

If we time-di�erentiate (36), assuming ηm is di�erentiable with respect to time, we get

r(t) + Im(j, ω̄, t) =
πm(j, ω̄, t)

ηm
−

(
π̇m(j, ω̄, t)
πm(j, ω̄, t)

− 1
α

Ṗm(t)
Pm(t)

)
+
η̇m
ηm

(37)

This is another arbitrage equation, according to which the e�ective rate of return on

capital equals the rate of return on horizontal R&D , where the latter equals the pro�t rate
earned by setting up now a new �rm with a new product line minus the increase in the

pro�t rate due to the next vertical innovation in that intermediate good (which is accrued
to the next innovator).15

Consistency arbitrage conditions

Finally, a consistency condition between vertical and horizontal arbitrage conditions is
needed. First, we �nd an expression for Rvm(j − 1, ω̄, t), by applying (22) to j − 1 (the
same for m = H) and combining it with (31), for a given Nm(t), (shown for m = L)

RvL(j−1, ω̄, t) =

∫ NL(t)
0 RvL(j − 1, ω, t)dω

NL(t)
=
IL(t) · ζ · (lL)ε ·QL(t)

NL(t)
= IL(t)·ζ·(lL)ε·qL(j, ω̄, t)

(38)

14However, observe that, given our assumption of constant returns to scale at the �rm level, V = η =
Rh
Ṅ

= dRh
dṄ

(see (33)). At this point, we departure from the model of entry in Brito and Dixon
(2008), as these authors implicitly assume an entry technology with decreasing returns, with the
result V = η = dRh

dṄ
> Rh

Ṅ
. This is equivalent to the model of entry in Howitt (1999) and Segerstrom

(2000) (see fn. 13, above). Note that the price of entry (V ) equals the marginal cost of entry (η) in
all cases considered above; nevertheless, our assumption of constant returns eschews positive pro�ts
from entering, since V = Rh

Ṅ
.

15Remember that π̇m
πm

, in (37), must be interpreted in expected terms.
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where we used IL(t) ≡ IL(j − 1, ω̄, t). Then, from the vertical free-entry condition, (24),

solved in order to Vm, we get VL(j + 1, ω̄, t) = RvL(j,ω̄,t)
IL(j,ω̄,t) ⇒ VL(j, ω̄, t) = RvL(j−1,ω̄,t)

IL(j−1,ω̄,t) .

Together with (38), we have (for m = L)

VL(j, ω̄, t) = ζ · (lL)ε · qL(j, ω̄, t) (39)

At last, equating (39) and the horizontal free-entry condition, (33), and following the
same steps for m = H, yields the consistency conditions

qL(j, ω̄, t) = QL(t)
NL(t) = ηL

ζ·(lL)ε

qH(j, ω̄, t) = QH(t)
NH(t) = ηH

ζ·(hH)ε
(40)

These conditions imply that, for each m = L,H, both the real rate of return to vertical
R&D and to horizontal R&D equal r for every t, meaning that the (competitive) capital
market is always willing to �nance both activities.16

2.3. The consumer sector

The economy consists of L+H identical dynastic families who consume and collect income
(dividends) from investments in �nancial assets (equity) and labour income. They choose
the path of �nal-good aggregate consumption {C(t), t ≥ 0} to maximise discounted life-
time utility

U =
∫ ∞

0

(
C(t)1−θ − 1

1− θ

)
e−ρtdt (41)

where ρ > 0 is the subjective discount rate and θ > 0 is the constant elasticity of
marginal utility with respect to consumption. We assume consumers have perfect fore-
sight concerning the aggregate rate of technological change over time and choose their
expenditure paths accordingly to maximise their discounted utilities, dispensing with the
time expectations operator, E(.), in (41).
Intertemporal utility is maximised subject to the �ow budget constraint

ȧ(t) = r(t) · a(t) + wL(t) · L+ wH(t) ·H − C(t) (42)

where a stands for households' �nancial assets (equity) holdings, measured in terms
of �nal-good output Y . Households take the real rate of return on �nancial assets, r
(that is, dividend payments in units of asset price corrected by the Poisson death rate,
r = πm

Vm
− Im)17 and the real labour wage, wm, as given. The initial level of wealth a(0)

is also given, whereas the condition limt→∞e
−
∫ t
0 r(s)dsa(t) ≥ 0 is imposed in order to

prevent Ponzi schemes.

16Observe also that by time-di�erentiating (40), we get η̇m
ηm

= π̇m
πm
− 1

α
Ṗm
Pm

. Substituting the latter in
(37) yields (30).

17This equation can be read as an arbitrage condition for investors, which requires that the real interest
rate equals the dividend rate, πm

Vm
, plus the rate of capital gain, −Im. This condition can be derived,

e.g., by solving (24) in order to Vm and substituting the result in (29).
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The optimal path of consumption satis�es the well-known di�erential Euler equation

Ċ(t)
C(t)

=
1
θ

(r(t)− ρ) (43)

as well as the transversality condition

lim
t→∞

e−ρtC(t)−θa(t) = 0 (44)

3. General equilibrium

In this section, we construct the general equilibrium and characterise the interior steady
state of our model.

3.1. The aggregate resource constraint

The balance sheet of households equates the value of equity holdings to the market value
of �rms, that is

a(t) ≡ aL(t)+aH(t) = VH(j, ω̄, t)·NH(t)+VL(j, ω̄, t)·NL(t) = ηH ·NH(t)+ηL·NL(t) (45)

Hence, we can characterise the change in the value of equity as

ȧ(t) = ηH · ṄH(t) + η̇H ·NH(t) + ηL · ṄL(t) + η̇L ·NL(t) (46)

Substituting (45), (42) and (37) (the latter solved in order to η̇m) in (46), yields, after
some algebric manipulation,

Y (t) = X(t) + C(t) +Rh(t) +Rv(t) (47)

where Rh = RhH + RhL and Rv = RvH + RvL.
18 Equation (47) tells us that total

�nal-good output, Y , is allocated among total consumption, C, total production of in-
termediate goods, X, total vertical R&D expenditures, Rv, and total horizontal R&D
expenditures, Rh, thus being a product market equilibrium equation.
Next, note that, by using IL(t) ≡ IL(j, ω, t) in (22), we get

RvL(t) =
∫ NL(t)

0
ΦL(j, ω, t)−1 · IL(j, ω, t)dω = IL(t) · ζ · (lL)ε · λ

1−α
α ·QL(t) (48)

An equivalent expression obtains for m = H.19 We use the latter, together with (17),
(18) and (32), to re-write (47) as

18The algebraic expressions for Rhm and Rvm implicit in (47) are Rhm = η̇m ·Nm and Rvm = Im · am +(
π̇m
πm
− 1

α
Ṗm
Pm

)
am, where am = Vm ·Nm. See Appendix B for a detailed derivation.

19It can be shown that the consistency between the expression for Rv implicit in (47) (see fn. 18) and
(48) is guaranteed by (40).

15



χY

[
PH(t)

1
α · h ·H ·QH(t) + PL(t)

1
α · l · L ·QL(t)

]
=

= χX

[
PH(t)

1
α · h ·H ·QH(t) + PL(t)

1
α · l · L ·QL(t)

]
+C(t) + ηL · ṄL(t) + ηH · ṄH(t)+

+IL(t) · ζ · (lL)ε · λ
1−α
α ·QL(t) + IH(t) · ζ · (hH)ε · λ

1−α
α ·QH(t) (49)

where χY ≡ A
1
α (1− α)

2(1−α)
α and χX ≡ A

1
α (1− α)

2
α .

3.2. The dynamic system

The general equilibrium is de�ned by the system of nine equations: the Euler equation
for consumption (43); the households' transversality condition (44); the horizontal ar-
bitrage conditions (37); the vertical arbitrage conditions (30); the arbitrage consistency
conditions (40); the product market equilibrium equation (49), plus the necessary initial
conditions.
We wish to obtain the dynamic system for Qm, Nm and C. Firstly, we solve (40)

in order to Ṅm, to obtain an ordinary di�erential equation (ODE) in Nm. Secondly,
by assuming that the number of sectors, Nm, is large enough to treat Qm as time-
di�erentiable and the time interval dt is small enough to have Q̇m non-stochastic, we
time di�erentiate (31) and simpli�y it with the previously obtained ODE in Nmto get
an ODE in Qm.Together with the Euler equation for consumption, (43), the dynamic
system reads

Ṅm(t) = xm(Qm, Nm) ·Nm(t) (50a)

Q̇m(t) = [Ξ · Im(t) + xm(Qm, Nm)] ·Qm(t) (50b)

Ċ(t) =
1
θ
· (r(t)− ρ) · C(t) (50c)

where Ξ ≡
(
λ

1−α
α − 1

)
and

xL(QL, NL) ≡
(
ζ

φ
· (lL)ε

) 1
γ

·QL(t)
1
γ ·NL(t)−

(
σ+γ+1
γ

)
(51)

xH(QH , NH) ≡
(
ζ

φ
· (hH)ε

) 1
γ

·QH(t)
1
γ ·NH(t)−

(
σ+γ+1
γ

)
(52)

Equations (50a)-(50c) de�ne a system of �ve non-linear ODE's, where r and IL (or IH)
are connected through (30), and ILand IH are connected through

IH(t)− IL(t) =
π̄

ζ

[
(hH)1−ε · PH(t)

1
α − (lL)1−ε · PL(t)

1
α

]
(53)
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The latter is an inter-technology arbitrage condition obtained by equating the two equa-
tions in (30), where we aknowledge the fact that the country's interest rate is always
unique.
In turn, solve (49), e.g., in order to IL, take (40) to eliminate ηm and simplify across

with (50a), to get

IL(t) ≡ IL(QL, QH , NL, NH , C, IH) =

=
1

ζ · λ
1−α
α · (lL)ε

(χY − χX)
[
PH(t)

1
α · h ·H · QH(t)

QL(t)
+ PL(t)

1
α · l · L

]
−
(
hH

lL

)ε
·QH(t)
QL(t)

·IH(t)−

− 1

λ
1−α
α

·
(
hH

lL

)ε
·QH(t)
QL(t)

·xH(QH , NH)− 1

λ
1−α
α

·xL(QL, NL)− 1

ζ · λ
1−α
α · (lL)ε

· C(t)
QL(t)

(54)

If we further use (53) to eliminate IH from (50b)-(50c) and (54), to get IL(t) ≡ IL(QL, QH , NL, NH , C),
and since PL and PH are (non-linear) functions of QH

QL
alone (see (14)), we are able

to de�ne the system of �ve ODE's ṄL = FNL(QL, NL), ṄH = FNH (QH , NH), Q̇L =
FQL(QL, QH , NL, NH , C), Q̇H = FQH (QL, QH , NL, NH , C) and Ċ = FC(QL, QH , NL, NH , C).

3.3. The steady state

Now, we derive and characterise the interior steady-state equilibrium. First, it is con-
venient to �nd a transformation of the system (50a)-(50c) such that we can work with
an equivalent system whose equilibria are �xed points. The stability and unicity of the
interior steady-state equilibrium are shown within this framework.

Proposition 1. Let gy ≡ ẏ/y, the growth rate of a variable y along the balanced growth
path. In this model, steady-state equilibria have the following characteristics: (i)
gC = gQL = gQH = g; (ii) gIL = gIH = 0; (iii) gPL = gPH = 0; (iv) gQmgNm

= (σ+γ+1),
xm 6= 0; and (v) gNL = gNH .

Proof: See Appendix C.

Having the above in mind, we transform the system (50a)-(50c) into a system of rescaled
variables. Recall (51)-(52) and let

zL(t) =
C(t)
QL(t)

(55)

Q∗(t) =
QH(t)
QL(t)

(56)

with the property that, in the steady state, ẋ = ż = Q̇∗ = 0. After time-di�erentiating
(51),(52), (55) and (56), and substituting with (50a), (50b), (50c), (30) (solved in order
to r) and (53) (solved in order to IH) where necessary, we get the system
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ẋL(t) =
[

Ξ
γ
· IL(t)−

(
σ + γ

γ

)
· xL(t)

]
· xL(t) (57a)

żL(t) =
{

1
θ
·
[
π̄

ζ
· (lL)1−ε · PL(t)

1
α − ρ

]
−
(

1
θ

+ Ξ
)
· IL(t)− xL(t)

}
· zL(t) (57b)

ẋH(t) =
{

Ξ
γ
· IL(t)−

(
σ + γ

γ

)
· xH(t) +

Ξ
γ
· π̄
ζ

[
(hH)1−ε · PH(t)

1
α − (lL)1−ε · PL(t)

1
α

]}
·xH(t)

(57c)

Q̇∗(t) =
{

Ξ · π̄
ζ
·
[
(hH)1−ε · PH(t)

1
α − (lL)1−ε · PL(t)

1
α

]
+ xH(t)− xL(t)

}
·Q∗(t) (57d)

where IL(t) ≡ IL(xL, xH , zL, Q∗) ≡ IL(QL, QH , NL, NH , C), as we can see by substitut-
ing (53) (solved in order to IH), (55) and (56) in (54). Since PL and PH are (non-linear)
functions of Q∗ alone (see (14) with (56)), we have a system of rescaled variables equiv-
alent to (50a)-(50c) which comprises four ODE's, ẋL = FxL(xL, xH , zL, Q∗) · xL, żL =
FzL(xL, xH , zL, Q∗)·zL, ẋH = FxH (xL, xH , zL, Q∗)·xH and ˙Q∗(t) = FQ∗ (xL, xH , Q∗)·Q∗.
This system connects the dynamics of Qm with Nm (m = H,L), C with QL and QL with
QH , displaying one jump variable (zL) and three pre-determined variables. Equations
(57a)-(57d), plus the transversality condition and the initial conditions xL(0), xH(0) and
Q∗(0) describe the transitional dynamics and the steady state of the model, by jointly
determining the variables (xL(t), zL(t), xH(t), Q∗(t)). From these we can determine the
original variables NL(t), NH(t), C(t) and QL(t) (alternatively, QH(t)), for a given QH(t)
(QL(t)). That is, the system is undetermined in QH(t) (QL(t)).
As usual, the �xed points of the system are found by equating ẋL = 0, żL = 0, ẋH = 0

and Q̇∗ = 0. However, given the special structure of our model in steady state, we can
solve �rst for the latter equation and use the result to solve jointly żL = 0 and ẋL = 0.
The solution for ẋH = 0 follows directly from the latter.
We are interested in the interior steady state, i.e., x̃L 6= 0 ∧ z̃L 6= 0 ∧ x̃H 6=

0 ∧ ˜(Q∗) 6= 0, where ~ indicates steady-state value. Given Proposition 1 and (50a), we
know that x̃L = x̃H . Together with (57d), we �nd that Q̇∗ = 0 implies

(hH)1−ε P
1
α
H − (lL)1−ε P

1
α
L = 0⇔ ˜(P ∗) ≡

˜(
PH
PL

)
=
(
lL

hH

)α(1−ε)
(58)

Note that this result also guarantees ĨL = ĨH (see (53)). Next, substitute (58) in (12)
and solve in order to QH

QL
to get

˜(Q∗) ≡
˜(
QH
QL

)
=
(
hH

lL

)1−2ε

(59)

From here, together with (13), (14) and (19), we �nd
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P̃L = e−α

[
1 +

(
hH

lL

)1−ε
]α

; P̃H = e−α

[
1 +

(
lL

hH

)1−ε
]α

(60)

˜̄n =

[
1 +

(
hH

lL

)1−ε
]−1

(61)

˜(
wH
wL

)
=
(
h

l

)1−ε(H
L

)−ε
(62)

Now, we turn to the solution of ẋL = 0 and żL = 0. By replacing (58) and (59)
in (54), we get the linear function IL ≡ IL(xL, xH , zL) = I0 + I1xH + I2xL + I3zL,

where I0 ≡ Θ

ζλ
1−α
α (lL)ε

(χY − χX)
[(
P̃H

) 1
α
hH ˜(Q∗) +

(
P̃L

) 1
α
lL

]
, I1 ≡ − Θ

λ
1−α
α

(
hH
lL

)1−ε
,

I2 ≡ − Θ

λ
1−α
α

and I3 ≡ − Θ

ζλ
1−α
α (lL)ε

, and Θ ≡
[
1 +

(
hH
lL

)1−ε]−1
. Substituting in (57a) and

(57b), equating ẋL = 0 and żL = 0 and solving for the interior equilibrium, yields

z̃L =
(
−I0 − I1x̃H − I2x̃L +

σ + γ

Ξ
x̃L

)
1
I3

(63)

x̃L =

Ξ
θ

[
π̄
ζ (lL)1−ε

(
P̃L

) 1
α − ρ

]
Ξ (σ + γ + 1) + 1

θ (σ + γ)
(64)

Given that xssL = xssH and (60), we can write

x̃H =

Ξ
θ

[
π̄
ζ (lL)1−ε

(
P̃L

) 1
α − ρ

]
Ξ (σ + γ + 1) + 1

θ (σ + γ)
=

Ξ
θ

[
π̄
ζ (hH)1−ε

(
P̃H

) 1
α − ρ

]
Ξ (σ + γ + 1) + 1

θ (σ + γ)
(65)

Also, from (50a) and (51)-(52), we �nd

g̃NL = g̃NH = x̃L = x̃H (66)

and, from Proposition 1-(iv),

g̃QL = g̃QH = g̃ =

Ξ
θ

[
π̄
ζ (lL)1−ε

(
P̃L

) 1
α − ρ

]
(σ + γ + 1)

Ξ (σ + γ + 1) + 1
θ (σ + γ)

(67)

Finally, using (63) and the de�nition of I0, I1, I2 and I3, we have

ĨL = ĨH =
σ + γ

Ξ
x̃L =

1
θ

[
π̄
ζ (lL)1−ε

(
P̃L

) 1
α − ρ

]
(σ + γ)

Ξ (σ + γ + 1) + 1
θ (σ + γ)

(68)

and
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z̃L = (χY − χX)
[(
P̃H

) 1
α
hH ˜(Q∗) +

(
P̃L

) 1
α
lL

]
−

−
(
ζλ

1−α
α ĨL + ζx̃L

) [
(hH)ε ˜(Q∗) + (lL)ε

]
(69)

The steady-state values of NL, NH and C are derived from (51)-(52) and (55), given QH
(alternatively, QL). Thus,

ÑL =
(
ζ

φ
(lL)ε

) 1
σ+γ+1

(x̃L)
−γ

σ+γ+1

(
Q̃L

) 1
σ+γ+1

(70a)

ÑH =
(
ζ

φ
(hH)ε

) 1
σ+γ+1

(x̃H)
−γ

σ+γ+1

(
Q̃H

) 1
σ+γ+1

(70b)

C̃ = z̃LQ̃L (71)

We use (70a) and (70b) to derive

˜(N∗) ≡
˜(
NH

NL

)
=
(
hH

lL

) 1−ε
σ+γ+1

(72)

Let the stock of technological-knowledge per �rm, QmNm , be a measure of average �rm size.
The ratio between (72) and (59) yields the steady-state value for the following measure
of relative average �rm size

˜(
Q∗

N∗

)
=
(
hH

lL

)−ε[1+2(σ+γ)]+σ+γ
σ+γ+1

(73)

Alternative measures of �rm size are production (or sales) per �rm, XLNL = χXP
1
α
L lL

QL
NL

(see (17) and (49); a similar expression obtains for m = H), and �nancial assets per �rm,
aL
NL

= ηL = ζ (lL)ε QLNL (see (45) and (40); a similar expression obtains for m = H). Thus,
we may consider

˜(X∗) ≡
˜(
XH

XL

)
=
(
hH

lL

)1−ε
(74)

˜(
X∗

N∗

)
=

˜(
PH
PL

) 1
α
(
hH

lL

) ˜(
Q∗

N∗

)
=
(
hH

lL

) (1−ε)(σ+γ)
σ+γ+1

(75)

where (74) and (75) are derived from (17), (58), (59) and (72). Observe that, given

the assumptions of our model,20 we have also ˜( a∗
N∗

)
=
(
hH
lL

)ε ˜(Q∗
N∗

)
=
(
hH
lL

) (1−ε)(σ+γ)
σ+γ+1 ,

where a∗ ≡ aL
aH

, that is, the alternative measures of relative �rm size X∗

N∗ and
a∗

N∗ coincide
in steady state, whatever ε, in spite of the outstanding di�erences between the two

20Namely, we have ζL ≡ ζH ≡ ζ.
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alternative measures of absolute �rm size, am
Nm

and Xm
Nm

. Note also that X∗

N∗ and a∗

N∗ are

strictly equal to Q∗

N∗ i� ε = 0.
The results above can be summarized in the following proposition.

Proposition 2. There is a unique interior steady-state equilibrium, as de�ned by equa-
tions (59)-(71).

Proof: See derivations above.

Finally, g̃ > 0 requires π̄
ζ (lL)1−ε

(
P̃L

) 1
α − ρ = π̄

ζ (hH)1−ε
(
P̃H

) 1
α − ρ > 0. Since, from

(43), g = gC = 1
θ (r − ρ), then r > ρmust occur. This condition also guarantees g̃Nm > 0.

On the other hand, according to the transversality condition, (44), together with (45)
and (40), we have

lim
t→∞

e−ρt ·C(t)−θ · ζ · (lL)ε ·QL(t) = lim
t→∞

e−ρt ·
(
C(t)
QL(t)

)−θ
· ζ · (lL)ε ·QL(t)1−θ = 0 (76)

where C
QL

is stationary in steady-state, as shown above. Let QL = Q̂Le
gt, where Q̂L

denotes detrended QL (thus stationary in steady-state), and substitute in (76), to see
that the transversality condition implies ρ ≥ (1 − θ)g; using again g = 1

θ (r − ρ), the
latter condition can be written alternatively as r > g. As it happens, this condition also
guarantees that attainable utility is bounded, i.e., the integral (41) converges to in�nity.
Thus, our model predicts, under a su�ciently productive technology, a steady-state

equilibrium with constant positive g and gN , where the former exceeds the latter by
an amount corresponding to the growth of intermediate-good quality, driven by verti-

cal innovation; to verify this, just replace (50a) in (50b) and solve to get Q̇m
Qm
− Ṅm

Nm
=

Im ·
(
λ

1−α
α − 1

)
. This implies that the consumption growth rate equals the growth rate

of the number of varieties plus the growth rate of intermediate-good quality, in line
with the view that industrial growth proceeds both along an intensive and an extensive
margin.Similarly to Gil, Brito, and Afonso (2008), variety expansion is sustained by en-
dogenous technological-knowledge accumulation (independently of population growth),
as the expected growth of intermediate-good quality due to vertical R&D makes it at-
tractive, in terms of intertemporal pro�ts, for potential entrants to always put up an
entry cost, in spite of its increase with Nm.

21

4. Comparative steady-state results

Now, we discuss the comparative statics of the interior steady-state,22 namely concerning
the impact of changes in hH

lL , ε, σ and γ on the number of �rms, technology-knowledge

21Observe also that P̃L, P̃H may di�er from unity (see (60)). If P̃m exceeds (is less than) unity, the pro-
duction technology can (must) be proportionaly less (more) productive than in the single-technology
model (where PL ≡ PH ≡ PY = 1) in order to ensure g̃ > 0.

22Henceforth, the ~ is omitted for the sake of simplicity.
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stock, production (sales) and the average �rm size in the H-complementary-technology
vis-à-vis the L-complementary-technology sector (henceforth, we refer to the latter as
sector H vis-à-vis sector L). That is, we focus on N∗, Q∗, X∗, Q

∗

N∗ and
X∗

N∗ .
23

4.1. �Cross-country� analysis

4.1.1. Labour endowment, scale e�ects and industrial structure

The proposition below summarises the main results with respect to the impact of changes
in hH

lL on the industrial structure, as characterised by the number of �rms and average
�rm size across sectors, considering four critical values for the degree of scale-e�ects
removal, ε. One can interpret this exercise as a cross-section comparison of industrial
structures between countries with di�erent levels of hHlL .

Proposition 3 The higher hH
lL : (i) if ε = 0 , the higher N∗, Q∗, Q∗

N∗ , X
∗ and X∗

N∗ ; (ii)

if ε = ε̄ ≡ σ+γ
1+2(σ+γ) , the higher N∗, Q∗, X∗ and X∗

N∗ with an invariant Q∗

N∗ ; (iii) if

ε = 1
2 , the higher N∗, X∗ and X∗

N∗ , and the lower Q∗

N∗ , with an invariant Q∗; (iv) if

ε = 1 , the lower Q∗and Q∗

N∗ , with invariant N∗, X∗and X∗

N∗ .

Proof: Di�erentiate (59), (72), (73) and (75) with respect to hH
lL .

The critical value ε = 0 corresponds to the case of complete (positive) scale e�ects (e.g.,
Acemoglu and Zilibotti, 2001), whereas ε = 1 corresponds to the case of no scale e�ects
(e.g., Afonso, 2006). The intermediate critical values correspond to the case where scale
e�ects, although existent, have either no impact on Q∗

N∗ (ε = ε̄) or on Q∗(ε = 1
2).

We look at the mechanism that links relative labour endowment to industrial structure
by focusing on three intervals for ε. When 0 ≤ ε < ε̄, i.e., the case of large positive scale ef-
fects, a country with a higher hHlL is expected to have a largernumber of �rms and a larger
average �rm size in sector H vis-à-vis sector L. In fact, a higher relative endowment of
skilled labour induces a larger number of �rms and aggregate technological-knowledge
stock, in relative terms, in the sector that produces skilled-labour complementary goods;
however, the increment obtained in the technological-knowledge stock is larger than in
the number of �rms, therefore implying an also larger average �rm size in sector H vis-à-
vis sector L. When ε > 1, i.e., the case of negative scale e�ects, the positive relationship
between the number of �rms and average �rm size is also veri�ed but, unsurprisingly,
larger values obtain with a smaller endowment of skilled labour vis-à-vis unskilled labour.
Finally, when ε̄ < ε < 1, i.e., the case of positive but small scale e�ects, a country with
a higher hH

lL is expected to have a larger number of �rms but a smaller average �rm size

in sector H vis-à-vis sector L.In particular, if ε̄ < ε < 1
2 , Q

∗ increases less that N∗ in

response to a higher hH
lL , whereas if 1

2 < ε < 1, Q∗ falls and N∗ increases in response to

a higher hH
lL .24

23The comparative statics concerning the remaining structural parameters and endogenous variables can
be found in Gil, Brito, and Afonso (2008).

24Observe that ε̄ ≡ σ+γ
1+2(σ+γ)

< 1
2
, whatever σ and γ positive and �nite.
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The results above stem from the di�erent response of Q∗ and N∗ to hH
lL (see (59)

and (72)). In turn, this mirrors the dominant impact of scale e�ects on Q∗ through
the vertical-innovation mechanism, impacting only through the latter on the horizontal-
innovation mechanism, thereby a�ecting N∗,25combined with the fact that only the hor-
izontal entry dynamics is regulated by variable entry costs with elasticities σ and γ. The
higher sensitivity of Q∗ to scale e�ects is clear from Proposition 1, according to which
Q∗ is constant with respect to hH

lL when ε = 1
2 (i.e., 50 percent of scale e�ects removed),

while N∗ is constant with respect to hH
lL when ε = 1 (i.e., complete removal of scale

e�ects). This also explains the e�ect of σ and γ on the value of the endogenous threshold
ε̄: the lower σ and γ, the lower ε̄, i.e., the higher the degree of scale e�ects below which
there is a falling relative �rm size with hH

lL .

We also draw our attention to the alternative measure of relative �rm size X∗

N∗ (or
a∗

N∗ ).
In this case, the model predicts that, if 0 ≤ ε < 1 (respectively, ε > 1), a higher (lower)
hH
lL always corresponds to a higher average �rm size and ahigher number of �rms in

sector H vis-à-vis sector L.The behaviour of X∗

N∗ is explained by the autonomous e�ect

of hHlL , through the price ratio PH
PL

, on X∗

N∗ , in addition to the basic channel that impacts

on Q∗

N∗ . In Appendix D, Figure 2 depicts the relationship between hH
lL and Q∗

N∗ ,
X∗

N∗ , and
N∗.
Cross-country evidence in Figure 1, Appendix A, suggests that the relative number

of �rms tends to be (i) positively correlated with relative production, but (ii) (slightly)
negatively correlated with relative average �rm size. Relationship (i) is compatible with
our results with respect to N∗ and X∗, provided there are some scale e�ects (positive
or negative), as well as to N∗ and Q∗, if scale e�ects are either negative or positive and
large; however, relationship (ii) is in line with our results only if we consider relative �rm
size measured as Q∗

N∗ , in the case of small positive scale e�ects. As explained above, if
ε̄ < ε < 1

2 , both (i) and (ii) are compatible with the predictions of our model.

4.1.2. Labour endowment, scale e�ects and the concentration index

In the tradition of the IO literature, we are also interested in the relation between hH
lL , ε

and a synthetic measure of industry concentration. Concentration measures widely used
in the literature are, e.g., the k-�rm concentration ratio (the sum of the market share of
the kth biggest �rms in a given industry) and the Her�ndahl index (the quadratic sum
of the shares of all �rms in a given industry).
However, one must take into account two particular features of our model when choos-

ing which concentration measure to adopt. First, the relevant �market� to measure the
degree of concentration is established at the economy-wide level, since the economy com-
prises a continuum of monopolistic industries producing imperfectly substitutable goods.
Second, the �equilibrium� values of the endogenous variables of interest (namely, output

25Notice that, given the postulated horizontal entry technology and our lab-equipment speci�cation,
the vertical-innovation mechanism ultimately commands the horizontal entry dynamics in steady
state, meaning that a steady state with increasingly costly entry only occurs because entrants expect
incumbency value to grow propelled by quality-enhancing R&D.
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and the number of �rms) are non-stationary, in the sense that they are de�ned along a
balanced-growth path characterised by positive growth rates. Thus, by construction, the
k-�rm concentration ratio is devoided of interest in the light of the �rst feature, whereas
the Her�ndahl index is not suitable specially given the second one (it tends to zero as
Nm grows at the rate gN > 0 along the balanced-growth path).26 A similar appreciation
can be done with respect to other commonly used concentration measures.
Thus, we build our own synthetic measure of concentration, adapted to the context

of our model. We propose a two-dimension aggregate concentration index with two
versions, by combining the �market share� of the number of �rms, NmN , with the �market

share� of either the technological-knowledge stock, Qm
Q , or the output (sales), Xm

X , of
each technological sector (m = H,L), as follows

ΣQ ≡
QL
Q
· NL

N
+
QH
Q
· NH

N
=

Q∗ ·N∗ + 1
Q∗ ·N∗ +Q∗ +N∗ + 1

(77a)

ΣX ≡
XL

X
· NL

N
+
XH

X
· NH

N
=

X∗ ·N∗ + 1
X∗ ·N∗ +X∗ +N∗ + 1

(77b)

Our concentration index compares sectors at the economy-wide level instead of individual
�rms within a sector and is constant in steady state (see (59), (72) and (74)). The
aggregate character of our index accommodates the view, noted by Kamien and Schwatrz
(1975), that traditional industry boundaries seem to become decreasingly useful for the
purpose of economic analysis �as new products and processes compete across industry
lines�, which is a salient feature of our model.
The propositions below characterise the behaviour of the two versions of our concen-

tration index with respect to hH
lL and ε.

Proposition 4.1 (i) If 0 ≤ ε < 1
2 or ε > 1, and hH

lL > 1 ∧ hH
lL →∞ or hH

lL < 1 ∧ hH
lL → 0,

then ΣQ → 1; (ii) if 1
2 < ε < 1, and hH

lL > 1 ∧ hH
lL →∞ or hH

lL < 1 ∧ hH
lL → 0, then

ΣQ → 0; (iii.a) if hH
lL = 1, whatever ε > 0, then ΣQ = 1

2 ; (iii.b) if ε = 1
2 or ε = 1,

and hH
lL > 1 ∧ hH

lL →∞ or hH
lL < 1 ∧ hH

lL → 0, then ΣQ → 1
2 .

Proposition 4.2 (i) If 0 ≤ ε < 1 or ε > 1, and hH
lL > 1 ∧ hH

lL →∞ or hH
lL < 1 ∧ hH

lL → 0,
then ΣX → 1 ; (ii) if hHlL = 1, whatever ε > 0, or if ε = 1, whatever hH

lL > 0, then
ΣX = 1

2 .

Proof: See Appendix E.

Thus, 0 ≤ ΣQ ≤ 1 but 1
2 ≤ ΣX ≤ 1. As shown in detail in Appendix E, the boundaries

to the concentration index are to be interpreted as follows: ΣQ = 1 refers to total

concentration of �rms and technological-knowledge stock in a single technological sector

and ΣQ = 0 refers to total concentration of �rms in one technological sector and of

technological-knowledge stock in the other . We identify the extreme case ΣQ = 1 as
industry concentration of type I and ΣQ = 0 as industry concentration of type II. In

26Observe that the version of the concentration ratio usually applied to symmetric equilibria, 1
Nm

, also
tends to zero along the balanced growth path.
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contrast, ΣQ = 0.5 implies, in general, an uniform distribution of �rms and technological-

knowledge stock across sectors.27

The relationship between N∗ and X∗ determines, by construction, that the lower
boundary to ΣX is 1

2 (uniform distribution of �rms and output across sectors), such that
this version of the concentration index only admits industry concentration of type I (total
concentration of �rms and output in one technological sector).
By interpreting this exercise again as a cross-country comparison of industrial struc-

tures, we conclude that, depending on ε, the industrial structure of a given country is
characterised by either 1

2 ≤ ΣQ ≤ 1 or 0 ≤ ΣQ ≤ 1
2 . When ε > 1 or 0 ≤ ε < 1

2 , i.e.,

the case of either negative or large positive scale e�ects, a country with a higher hH
lL > 1

is expected to have a higher concentration index, towards ΣQ = 1, i.e., concentration of

type I ; a country with a higher hH
lL < 1 is expected to have a lower concentration index,

towards ΣQ = 1
2 , i.e., an uniform distribution. Thus, ΣQ displays a U-shaped behaviour

with respect to hH
lL , with its minimum at hH

lL = 1.
When 1

2 < ε < 1, i.e., the case of positive but small scale e�ects, a country with a

higher hH
lL > 1 is expected to have a lower concentration index, towards ΣQ = 0, i.e.,

concentration of type II ; a country with a higher hH
lL < 1 is expected to have a higher

concentration index, towards ΣQ = 1
2 , i.e., an uniform distribution. Thus, ΣQ displays

an inverted U-shaped behaviour with respect to hH
lL , with its maximum at hH

lL = 1.28

In contrast, the model predicts a U-shaped behaviour of ΣX with respect to hH
lL ,with its

minimum at hH
lL = 1, whatever ε 6= 1, i.e., provided there are some scale e�ects (whether

positive or negative). Figure 3.2, Appendix E, depicts the cases of non-monotonic rela-
tionship between the concentration index and hH

lL .
Computation of the concentration index by using the data in Figure 1, Appendix A,

shows that the index displays values above 0.5, hence implying industry concentration
of type I. This is compatible with our results if we consider ΣX , provided there are some
scale e�ects (positive or negative), or ΣQ, in the case of negative or large positive scale
e�ects. On the other hand, the concentration index and both relative production and
the relative number of �rms display a negative correlation across countries, which is also
compatible with our model as follows: if N∗ < 1, X∗ < 1 re�ect hH

lL < 1, then higher

N∗, X∗, due to higher hHlL , must imply a lower concentration index, down from 1 towards
0.5.

27In rigour, this corresponds only to (iii.a) in Proposition 4.1. We interpret (iii.b) as a �degenerate� case
associated with speci�c levels of scale e�ects (ε = 1

2
and ε = 1), as explained in Appendix E.

28We note that, here, the the critical value that separates the �large� from the �positive but small scale
e�ects� is ε = 1

2
, re�ecting the fact that Q∗ is constant with respect to hH

lL
when ε takes that value.

In Subsection 4.1.1, above, the relevant critical value is ε = ε̄, since therein we are interested in the
behaviour of Q

∗

N∗ , which is constant with respect to hH
lL

when ε takes the latter value.
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4.2. �Intra-country� analysis

4.2.1. Scale e�ects and industrial structure

In this subsection, we focus on the comparison between the relative number of �rms and
the relative average �rm size for a given hH

lL , in order to conclude on the skewness of
the steady-state distribution of average �rm size between sectors L and H in an intra-

country perspective.29The industrial structure is characterised by a skewed distribution
as follows

Proposition 5.1 (i) If ε̄ < ε < 1, then N∗ > (<)1 and Q∗

N∗ < (>)1, for a given hH
lL > (<)1,

thus corresponding to a right-skewed average size distribution (�more small-average
�rms than large-average �rms�); and (ii) if 0 ≤ ε < ε̄ [respectively, ε > 1], then
N∗ > (<)1∧ Q∗

N∗ > (<)1, for a given hH
lL > (<)1 [hHlL < (>)1], thus corresponding to

a left-skewed average size distribution (�more large-average �rms than small-average
�rms�).

Proposition 5.2 If 0 ≤ ε < 1 [respectively, ε > 1], then N∗ > (<)1 ∧ X∗

N∗ > (<)1, for a
given hH

lL > (<)1 [hHlL < (>)1], thus corresponding to a left-skewed average-�rm-size
distribution.

Proof: Immediate by inspection of (72), (73) and (75).

From Proposition 4, we learn that only in the case of positive but small scale e�ects, i.e.,
ε̄ < ε < 1, and hH

lL 6= 1 does the number of �rms in the sector with smaller average �rm
size exceeds the number in the sector with larger average �rm size, thus obtaining a skew-
ness which is in line with the IO stylised facts on the size distribution of individual �rms
(see, e.g., Sutton, 1997; and Cabral and Mata, 2003). The mechanism behind this result
is the same as the one described in Proposition 3, above. In the particular case of ε = ε̄
and hH

lL 6= 1, the two sectors have a di�erent number of �rms, but their average size is

the same; if ε = 1 and hH
lL 6= 1, the opposite is true, with the two sectors exhibiting the

same number of �rms, but with di�erent average size. When hH
lL = 1, the distribution

is uniform between sectors (same number of �rms and same average �rm size), whatever
ε > 0.
However, if we consider the alternative measure of relative �rm size, X

∗

N∗ (see (75)), then

the model always predicts a left-skewed average-�rm-size distribution, provided hH
lL 6= 1

and ε 6= 1. If hHlL = 1, whatever ε > 0, or if ε = 1, whatever hH
lL > 0, the distribution is

uniform between sectors. Figure 2, Appendix D, makes clear the di�erences between Q∗

N∗

and X∗

N∗ , for given ε and
hH
lL .

Now, let us take heterogenous horizontal �ow �xed entry costs (φL 6= φH) into account,

such that (72), (73) and (75) are rewritten as N∗ =
(
φL
φH

) 1
σ+γ+1 ·

(
hH
lL

) 1−ε
σ+γ+1 , Q∗

N∗ =(
φH
φL

) 1
σ+γ+1 ·

(
hH
lL

)−ε[1+2(σ+γ)]+σ+γ
σ+γ+1 and X∗

N∗ =
(
φH
φL

) 1
σ+γ+1 ·

(
hH
lL

) (1−ε)(σ+γ)
σ+γ+1 . We �nd that

29Our model could be extended to a setting of multiple types of human capital and, thus, multiple
complementary-technology sectors, in order to generate a smoother size distribution.
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our initial results of left-skewness are overturned for a value of φHφL su�ciently above (or

su�ciently below) unity, such that, e.g., one gets either N∗ > 1∧ X∗N∗ < 1(⇐ φL > φH) or

N∗ < 1 ∧ X∗

N∗ > 1 (⇐ φL < φH). Observe that φm only impacts on X∗

N∗ and Q∗

N∗ through
N∗ (see (70a) and (70b)),30as there is no relationship between Q∗ (and X

∗
through Q∗)

and φm (see (57d)-(59)). This results from the dominant e�ect exherted by the vertical-
innovation mechanism over the horizontal entry dynamics, already explained above.31,32

But, irrespective of the consideration of heterogeneous entry costs, we note that the
empirical regularity of right-skewed individual-�rm-size distribution and our theoretical
result of left-skewed average-�rm-size distribution are not necessarily contraditory. In
fact, by pooling individual �rms (selected from a given right-skewed size distribution)
in complementary-technology sectors, one may be able to observe empirically that the
number of �rms in the sector with larger average �rm size exceeds the number in the
sector with smaller average �rm size. In particular, this can be shown to be true as long
as the subsets of �rms in each sector are characterised by right-skewed size distributions
whose mean and variance di�er by the necessary ammount.33

According to the data in Figure 1, Appendix A, the relative number of �rms and
relative production display values below unity. This is in line with our results with respect
to X∗ (respectively, Q∗) given hH

lL < 1, if scale e�ects are positive (large positive), or
hH
lL > 1, if scale e�ects are negative. On the other hand, data shows relative �rm size
systematically above unity. This is compatible, in theoretical terms, with the observed
relative number of �rms below unity - implying a right-skewed �rm size distribution - (i)
if we consider relative �rm size measured as Q∗

N∗ , in the case of small positive scale e�ects,
or (ii) heterogenous horizontal �ow �xed entry costs of su�cient size combined with
relative �rm size measured as either X∗

N∗ , provided there are some scale e�ects (positive

or negative), or Q∗

N∗ , in the case of negative or large positive scale e�ects.
Finally, we are interested in analysing the impact of changes in the dynamic entry

costs, represented by the elasticities of the horizontal-entry cost function, σ and γ, in
the asymmetry of the industrial structure, by keeping hH

lL and ε as given. The following
proposition summarises the main results

Proposition 6 When σ and γ increase: (i) if hH
lL > (<)1, then N∗ decreases, and X∗

N∗

and Q∗

N∗ increase, whatever 0 ≤ ε < 1 (ε > 1); (ii) if hHlL < (>)1, then N∗ increases,
30Comparing with the IO literature that focus on the in�uence of entry costs on �rm dynamics and �rm

size distribution, we note that the role of (�ow �xed) entry costs in the derivation of the average-�rm-
size distribution in our model is con�ned to the static determination of the relative number of �rms
in each technological group. In contrast, the referred literature focus on the dynamic e�ects of (sunk)
costs, i.e., the e�ects on entry dynamics and post-entry �rm growth, thereby deriving results on the
ergodic individual-�rm-size distribution (e.g., Hopenhayn, 1992; and Ericson and Pakes, 1995).

31The same mechanism explains why φm has no e�ect on g (see (67)).
32The reversal of the left-skewness result could also be obtained by considering ζL 6= ζH . However, ζm

has a direct e�ect on both Q∗ (through P ∗; see (57d)-(59)), and N∗ (see (70a) and (70b)); ζm has
also an impact on g.

33Have in mind that, given the Poisson-driven quality-ladders mechanism that characterises �rms in
each technological sector in our model, it is possible to derive, under certain standard conditions,
an asymptotic right-skewed �rm size distribution (the lognormal distribution) for each sector (see
Segerstrom, 2007).
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and X∗

N∗ and Q∗

N∗ decrease, whatever 0 ≤ ε < 1 (ε > 1); (iii) if hHlL = 1 or ε = 1 (or

ε = ε̄, for Q∗

N∗ ), then N
∗, X

∗

N∗ and
Q∗

N∗ are independent of σ and γ.

Proof: Di�erentiate (72), (73) and (75) with respect to σ and γ.

In order to interpret the last proposition in terms of the in�uence of σ and γ in the
asymmetry of the industrial structure, one must consider whether the initial values of
N∗, X

∗

N∗ and
Q∗

N∗ are above or below unity. Hence, have in mind that hH
lL > (<)1⇒ N∗ >

1, X
∗

N∗ > 1 and hH
lL < (>)1⇒ N∗ < 1, X

∗

N∗ < 1, for a given 0 ≤ ε < 1 (ε > 1); on the other

hand, hH
lL > (<)1 ⇒ Q∗

N∗ > 1, if 0 ≤ ε < ε̄ (ε > 1), and Q∗

N∗ < 1, if ε̄ < ε < 1, whereas
hH
lL < (>)1⇒ Q∗

N∗ < 1, if 0 ≤ ε < ε̄ (ε > 1), and Q∗

N∗ > 1, if ε̄ < ε < 1.
Thus, according to Proposition 5, an increase in the dynamic entry costs leads to a

decrease, in relative terms, in the number of �rms in the sector that has more of them
(in sector H vis-à-vis sector L, if N∗ > 1, and vice-versa, if N∗ < 1), whatever ε 6= 1,
i.e., dynamic entry costs have always a stabilising e�ect with respect to the number of
�rms, provided there are some scale e�ects (whether positive or negative). In turn, this
impacts with opposite sign on �rm size, either measured as X

N or Q
N , since σ and γ have

no direct e�ect on Q∗ or X∗(see (59) and (74)). When �rm size is measured as X
N , an

increase in σ and γ leads to an increase, in relative terms, in the average �rm size in
the sector that has larger �rms, whatever ε 6= 1, i.e., dynamic entry costs have always a

destabilising e�ect with respect to average �rm size, provided there are some scale e�ects,
thus contervailing the stabilizing e�ect on the number of �rms.

However, when �rm size is measured as Q
N , an increase in σ and γ have a destabilising

e�ect with respect to average �rm size only when scale e�ects are either negative or
positive and large (i.e., ε > 1 or 0 ≤ ε < ε̄). When scale e�ects are positive but
small (ε̄ < ε < 1), an increase in σ and γ leads to an increase, in relative terms, in the
average �rm size in the sector that has smaller �rms, i.e., dynamic entry costs have a
stabilising e�ect with respect to average �rm size. Given the described e�ect on N∗, we
then �nd that dynamic entry costs have a global stabilising e�ect on industrial structure

only whenscale e�ects are positive but small . Otherwise, the impact on the number of

�rms contervails the e�ect on average �rm size.

4.2.2. Dynamic entry costs, the concentration index and aggregate growth

In this subsection, we explore the association between industrial concentration, measured
by our concentration index, and aggregate long-term growth, g, by taking into account the
simultaneous impact of changes in the dynamic entry costs, σ and γ, on both variables.34

First, we analyse the e�ect of changes in σ and γ on g.

Proposition 7 The aggregate growth rate, g, is decreasing in the elasticities σ and γ.

Proof: Di�erentiate (66) with respect to σ and γ.

34Note that σ and γ are the only primitive parameters of the model that in�uence simultaneously g, ΣQ
and ΣX , for a given set (ε, hH

lL
) (see (67), (59), (72) and (74)).
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The next propositions summarise the e�ect of σ and γ on ΣQ and ΣX .

Proposition 8.1 (i) If 0 ≤ ε < 1
2 or ε > 1, and hH

lL 6= 1, then ΣQ is decreasing in σ and

γ (towards ΣQ = 1
2); (ii) if

1
2 < ε < 1, and hH

lL 6= 1, then ΣQ is increasing in σ and

γ (towards ΣQ = 1
2); (iii) if ε = 1 or hH

lL = 1, then ΣQ is independent of σ and γ.

Proposition 8.2 (i) If 0 ≤ ε < 1 or ε > 1, and hH
lL 6= 1, then ΣX is decreasing in σ and

γ (towards ΣX = 1
2); (ii) if ε = 1 or hH

lL = 1, then ΣX is independent of σ and γ.

Proof: Di�erentiate (77a) and (77b) with respect to σ and γ.

From Propositions 7 and 8, we conclude that, with respect to ΣQ, there is a positive

relationship between aggregate growth and concentration of type I, when scale e�ects are
negative or positive and large, but a positive relationship between aggregate growth and

concentration of type II , when scale e�ects are positive but small. With respect to
ΣX , there is a positive relationship between aggregate growth and concentration of type

I, provided there are at least some scale e�ects, whether positive ornegative. By joining
Proposition 6, 7 and 8, we learn that a higher aggregate growth is expected to come
hand-in-hand with a higher concentration of type I (respectively, type II), but also with
a less (more) asymmetric distribution of �rm size across sectors.35

According to the data in Figure 1, Appendix A, the concentration index and aggregate
per capita growth display a positive correlation, which is in line with our model if we
consider ΣX , whatever the level of (non-null) scale e�ects, or with ΣQ, in the case of
either negative or large positive scale e�ects.
It is clear from the results above how the general equilibrium nature of our model allows

for simultaneous determination of aggregate growth and industrial structure - in contrast
to the traditional focus on causal e�ects -, as a subset of the technology parameters of
the model (σ, γ) that determine the aggregate growth rate also in�uence concentration.
Finally, it should also be clear that our results with respect to the association between

aggregate growth and industrial structure concern its quantitative dimension (i.e., how
many �rms and how much production are allocated to each sector vis-à-vis the others)
and not its qualitative dimension (i.e., concentration of economic activity in a speci�c
type of sector), as pursued by the literature of structural change (e.g., Fagerberg, 2000
and Bonatti and Felice, 2008).

4.2.3. Schumpeterian hypothesis

A wide range of empirical interpretations of the Schumpeterian hypothesis has led to a
diversity of tests, in particular, involving the relationship between R&D activity and both
market power and �rm size, each variously measured (Kamien and Schwatrz, 1975). Less
frequently recognised are the feedbacks between the latter variables and R&D activity.

35In rigour, since ε̄ < 1
2
for σ and γ positive and �nite, one must also take into account the interval

ε ∈ (ε̄, 1
2
), for which a higher concentration of type I relates to a more asymmetric distribution of

�rm size.
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On the other hand, data availability has allowed more extensive investigation of the
relation of R&D activity with �rm size than with market power. Therefore, there is a
large literature studying whether R&D activity increases more than proportionaly with
�rm size, i.e., whether large �rms are more R&D-intensive than small �rms. At least
among R&D-reporting �rms, the evidence suggests that R&D increases in proportion to
sales, poiting to R&D intensity independent of �rm size (Klette and Kortum, 2004).
Having the above in mind, we now explore a version of the Schumpeterian hypothesis

by studying the interrelation between R&D intensity, measured as the ratio between
R&D outlays and �rm size, and average �rm size, measured as Q

N or X
N . As referred

before, in our model there is no causality to be imputed to these relationships, since
average �rm size and R&D activityare simultaneously determined.
Firstly, use (32), (40) and (48) to get R∗v ≡ RvH

RvL
=
(
hH
lL

)ε
Q∗ and R∗n ≡ RnH

RnL
=(

hH
lL

)ε
Q∗. Then, combine the latter with (59) and (74) to �nd the R&D-intensity ratios

R∗

Q∗
=
(
hH

lL

)ε
(78a)

R∗

X∗
= 1 (78b)

where R∗ ≡ R
∗
n = R∗v. The relation between R&D intensity and average �rm size is

characterised as follows

Proposition 9.1 (i) If ε̄ < ε < 1, then R∗

Q∗ > (<)1 and Q∗

N∗ < (>)1, for a given hH
lL > (<)1;

and (ii) if 0 ≤ ε < ε̄ [respectively, ε > 1], then R∗

Q∗ > (<)1 ∧ Q∗

N∗ > (<)1, for a given
hH
lL > (<)1 [hHlL < (>)1].

Proposition 9.2 If 0 ≤ ε < 1 [respectively, ε > 1], then R∗

X∗ = 1∧ X∗

N∗ > (<)1, for a given
hH
lL > (<)1 [hHlL < (>)1].

Proof: Immediate by inspection of (73), (78a), (75) and (78b).

According to Proposition 9, the version of the Schumpeterian hypothesis that relates pos-
itively R&D intensity and �rm size is only predicted by our model when size is measured
as Q

N and scale e�ects are either negative or positive and large. In contrast, if scale ef-
fects are positive but small, the technological sector with smaller average �rm size exhibits

higher levels of R&D intensity. One must also consider the following cases: if hH
lL = 1,

whatever ε > 0, R&D intensity and average �rm size are both constant across sectors;
if ε = 0, whatever hH

lL > 0, R&D intensity is unchanged across sectors, irrespective of
the behaviour of �rm size; and if ε = ε̄, �rm size is constant across sectors, irrespective
of the behaviour of R&D intensity. Thus, in the latter two particular cases, the model
implies that R&D intensity is independent of �rm size, which is one of the stylized facts
that have emerged from �rm-level empirical studies (Klette and Kortum, 2004).
Also important, when �rm size is measured as X

N , R&D intensity is unchanged across
sectors, irrespective of the behaviour of �rm size, whatever ε 6= 1. Thus, the model again
implies that R&D intensity is independent of �rm size; however, with R&D intensity

30



measured as a ratio to sales, it is just su�cient to have some degree of scale e�ects,
whether positive or negative, to obtain this result.36

The data in Figure 1, Appendix A, shows relative R&D intensity above unity, which is
compatible, in theoretical terms, with the observed relative �rm size also above unity if we
consider relative R&D intensity measured as R

∗

Q∗ and hence the relative �rm size measured

as Q∗

N∗ (i) in the case of either negative or large positive scale e�ects, or (ii) if we combine
Q∗

N∗ with heterogenous horizontal �ow �xed entry costs of su�cient size, also in the case
of small positive scale e�ects (see Subsection 4.2.1).37In any case, the data we present
seems to corroborate the Schumpeterian hypothesis as de�ned at the technological-sector
level, in contrast to the conclusions from �rm-level empirical evidence, referred to above.

5. Concluding remarks

This paper studies a speci�c dimension of the industrial structure, that of the distribution
of �rms and production across technological sectors, by building an endogenous-growth
model of directed technical change that merges the expanding-variety with the quality-
ladders mechanism. Our general equilibrium framework allows us to accommodate the
view that the relationship between industrial structure, innovative activity and aggregate
growth is not a causal one, but instead that they are simultaneously (endogenously)
determined.
The model presented herein provides one possible economic mechanism to explain the

data on the number of �rms, production, average �rm size and R&D intensity in high-
tech vis-à-vis low-tech sectors in a set of european countries. It also provides a theoretical
instrument to study the association between concentration, measured at the aggregate
level, and long-run aggregate growth.
Our results hinge on the assumption that scale e�ects connected to the size of pro�ts

that, in each period, accrue to the incumbent may be negative, positive or null. By
focusing on the steady state, we �nd that, as the degree of scale e�ects changes, the
industrial structure associated to a given level of relative labour endowment may di�er
signi�cantly. Likewise, there may be also changes in the way the relationship between
industrial structure, R&D intensity and long-term aggregate growth is characterised.

If anything, the confrontation with the data suggests that the empirical relevance
of our results depends, in general, on the existence of either negative or large positive
scale e�ects. Given this, we underline the pratical importance of distinguishing small but
positive from negative scale e�ects, in particular when theoretical �rm size is measured as

36Parallel results could be appreciated by conducting a �cross-country� analysis as in Subsection 4.1.1.
For instance, if ε̄ < ε < 1, then the higher hH

lL
, the higher R∗

Q∗ and the lower Q∗

N∗ , thus implying a

negative relationship between �rm size and R&D intensity. On the other hand, the higher hH
lL

, the

higher X∗

N∗ with an invariant R∗

X∗ , whatever ε 6= 1, implying R&D intensity is independent of �rm size.
37However, according to the cross-country evidence, relative R&D intensity and relative �rm size tend

to be negatively correlated, a fact that is compatible with our theoretical results (see fn. 36) if we

consider relative �rm size measured as Q∗

N∗ , in the case of small positive scale e�ects.
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technological-knowledge stock per �rm. In that case, the predictions of the model su�er
a change of sign, which we may term as a �regime switch�, with the switch parameter
being ε.
On the empirical side, further research should be devoted to �ll the data gap on

the magnitude of scale e�ects, relative labour endowments measured in e�ciency units
and dynamic horizontal entry costs, in order to assess the quantitative relevance of our
mechanism in explaning the cross-country variability of industrial structure. Some e�ort
might also be devoted to the collection of data on the composition of the technological-
knowledge stock between high-tech and low-tech sectors. On the other hand, a larger
set of countries than the one used here, in particular including the US and Japan, is
desirable in order to guarantee robustness of empirical results.
Finally, in the present paper, the whole of our theoretical analysis was conducted in

terms of steady-state equilibrium. The study of the transitional dynamics is, however, an
objective for future work. By characterising qualitatively the local dynamics properties
in a neighbourhood of the interior steady state, we wish to �nd to what extent variations
in a country's initial conditions (namely the inherited number of �rms and stock of
technological knowledge) lead to non-monotonic time paths of both industrial structure
and skill premium towards the steady state. On the other hand, given the role played
by factor endowment and scale e�ects, it should be only natural to extend our model to
an open-economy framework, in particular focusing on intermediate-good international
trade and its impact on the cross-country industrial structure.
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Appendix

A. Data on high-tech and low-tech sectors

In this appendix we present data with respect to the number of �rms, production, av-
erage �rm size (production/number of �rms) and R&D intensity (R&D/production) in
high-tech vis-à-vis low-tech sectors, and also aggregate per capita growth rates, all con-
cerning 23 european countries in the period 1995-2005. The source is the Eurostat on-line
database, where the OECD classi�cation of high-tech and low-tech sectors is considered.
We also compute the aggregate concentration index for each country by applying the
data to (77a)-(77b).

Figure 1
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B. General equilibrium: derivation of equation (47)

We derive the aggregate resource constraint from the households' balance sheet and
�ow budget constraint. Firstly, consider the production function (1), such that, given
threshold (13), we have �rm n value product (time indexes are omitted)

P (n)·Y (n) =

P (n) ·A ·
[∫ NL

0

(
λjL(ω) · xL(n, ω)

)1−α
dω
]

[(1− n) · l · L(n)]α , 0 ≤ n ≤ n̄

P (n) ·A ·
[∫ NH

0

(
λjH(ω) · xH(n, ω)

)1−α
dω
]

[n · h ·H(n)]α , n̄ ≤ n ≤ 1
(79)

Since, in equilibrium, the wage paid to each unit of human capital m = L,H is equal to
its marginal value product, we use (79) to get{

wL = ∂(P (n)Y (n))|0≤n≤n̄
∂L(n)

wH = ∂(P (n)Y (n))|n̄≤n≤1

∂H(n)

⇔

{
wL · L(n) = α · P (n) · Y (n) |0≤n≤n̄
wH ·H(n) = α · P (n) · Y (n) |n̄≤n≤1

(80)

Aggregating (80) across n and simplifying with (10), yields{∫ n̄
0 wL · L(n)dn = α

∫ n̄
0 P (n) · Y (n)dn∫ 1

n̄ wH ·H(n)dn = α
∫ 1
n̄ P (n) · Y (n)dn

⇔

{
wLL = αYL

wHH = αYH
(81)

where YL =
∫ n̄

0 P (n)Y (n)dn, YH =
∫ 1
n̄ P (n)Y (n)dn, such that Y ≡ YL+YH =

∫ 1
0 P (n)Y (n)dn.

On the other hand, from the derivation of (18), we know that YL = A
1
α · (1− α)

2(1−α)
α ·

P
1
α
L · l · L ·QL and YH = A

1
α · (1− α)

2(1−α)
α · P

1
α
H · h ·H ·QH . Also, from the derivation

of (17), we learn that XL =
∫ NL

0 XL(ω)dω = A
1
α · (1− α)

2
α · P

1
α
L · l · L · QL and XH =∫ NH

0 XH(ω)dω = A
1
α · (1− α)

2
α ·P

1
α
H ·h ·H ·QH . Therefore, it is easy to show that, given

(7),

Xm = (1− α)2 Ym ⇔ pmXm = (1− α)Ym , m = L,H (82)

We put (81) and (82) together to get aggregate gross income

Ym = wmm+ pXm , m = L,H (83)

or, since (considering the average intermediate-good sector) total pro�ts in each technol-

ogy group are πmNm =
∫ Nm

0 (pm(ω)− 1) ·Xm(ω)dω = (p−1)Xm, to get aggregate value
added

Ym −Xm = wmm+ πmNm , m = L,H (84)

Secondly, consider the households' balance sheet (having in mind the average intermediate-
good sector), together with (33),

a ≡ aL + aH = VLNL + VHNH = ηLNL + ηHNH (85)
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which, by time-di�erentiation, becomes

ȧ = ηLṄL + η̇LNL + ηHṄH + η̇HNH (86)

Next, we solve (37), in the text, in order to η̇ and, together with (85) and (42), substitute
in (86) to get

r (aL + aH) + wLL+ wHH − C = ηL (r + IL)NL − πLNL + ηL

(
π̇L
πL
− 1
α

ṖL
PL

)
NL+

+ηH (r + IH)NH − πHNH + ηH

(
π̇H
πH
− 1
α

ṖH
PH

)
NH + ηLṄL + ηHṄH ⇔

⇔ wLL+ wHH + πLNL + πHNH = C + ILηLNL + IHηHNH + ηLṄL + ηHṄH+

+

(
π̇L
πL
− 1
α

ṖL
PL

)
ηLNL +

(
π̇H
πH
− 1
α

ṖH
PH

)
ηHNH (87)

By using (84) in (87) and de�ning Rh = RhH + RhL; Rv = RvH + RvL; Rhm = η̇mNm

and Rvm = Imam +
(
π̇m
πm
− 1

α
Ṗm
Pm

)
ηmNm, m = L,H, we �nd

YL −XL + YH −XH = C +RhH +RhL +RvH +RvL ⇔

⇔ Y = X + C +Rh +Rv

which is (47).
Finally, observe that since the real interest rate r consists of dividend payments in

units of asset price minus the Poisson death rate, i.e., r = πm
Vm
− Im, for each t, then

am = VmNm ⇒ πmNm = (r + Im)am.38 From here and (84), we re-write (42) as

ȧ = r (aL + aH) + wLL+ wHH − C =

=
(
πL
VL
− IL

)
aL +

(
πH
VH
− IH

)
aH + wLL+ wHH − C =

= YL −XL + YH −XH − ILaL − IHaH − C (88)

If we replace (47), solved in order to Rv +Rh, in (88), we obtain

ȧ = Rv +Rh − (ILaL + IHaH) (89)

38See fn. 17, in the text.
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which is the accumulation equation for a. The �rst two terms on the right-hand side
of (89) represent the gross investment in technological knowledge at time t, whereas
the third term represents the depreciation (obsolescence) of the existing technological-
knowledge stock due to the stochastic arrival of vertical innovations (i.e., as j jumps to
j + 1) in each technological group.

C. Proof of Proposition 1

Here, we give a sketch of the proof of Proposition 1 (the detailed steps can be found in Gil,
Brito, and Afonso, 2008): (i), (ii) and (iii) are derived together by time-di�erentiating
the aggregate resource constraint (89), combined with (14), (53); (iv) results from (50a),
(51) and (52); �nally, (v) results from (i) and (iv).

D. Relative number of �rms and relative average �rm size

In Figure 2, below, we depict the relationship between relative labour endowment and
both the number of �rms and (two alternative measures of) average �rm size in H-
complementary-technology sector vis-à-vis L-complementary-technology sector, for se-
lected degrees of scale-e�ect removal, ε, and given σ and γ.

Figure 2 - Relative number of �rms and relative average �rm size
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E. Concentration index

In this appendix, we present in some detail the two-dimensional aggregate concentration
index analysed in the text. De�ne the �market shares� um ≡ Qm

Q , vm ≡ Xm
X , om ≡ Nm

N
(m = H,L), such that

ΣX ≡ vL · oL + vH · oH = (1− vH) · (1− oH) + vH · oH (90a)

ΣQ ≡ uL · oL + uH · oH = (1− uH) · (1− oH) + uH · oH (90b)

According to the generic algebraic properties of ΣQ as de�ned in (90b), the index has as
an upper boundary ΣQ = 1⇐

(
um, om = 0⇔ um′ , om′ = 1

)
, i.e., total concentration of

�rms and technological-knowledge stock in a single technological sector ; and as a lower
boundary ΣQ = 0 ⇐

(
um = 1, om = 0⇔ um′ = 0, om′ = 1

)
, i.e., total concentration of

�rms in one technological sector and of technological-knowledge stock in the other. Also
of interest is ΣQ = 0.5⇐

(
um, om = 0.5⇔ um′ , om′ = 0.5

)
, i.e., uniform distribution of

�rms and technological-knowledge stock across sectors. The same should apply to ΣX in
(90a), with the share of technological-knowledge stock replaced by the share of output,
vm ≡ Xm

X .
One also obtains ΣQ = 0.5 if um = 0.5, om = 0 ⇔ um′ = 0.5, om′ = 1, corresponding

to a uniform distribution of the technological-knowledge stock but total concentration of
�rms in one technological sector (or vice-versa). We treat this as a degenerate case in
terms of our model, associated with speci�c levels of scale e�ects (ε = 1

2 and ε = 1), as
shown below (see Proof of Proposition 4.1). This case does not apply to ΣX .

39

Yet, given that ΣQ and ΣX are also de�ned as (77b) and (77a) when transposed to
our model, we �nd that, by construction, the upper and lower boundaries are not set
alike for the two versions of our concentration measure, as referred in Propositions 4.1
and 4.2, in the text. Next, we give the proof to these propositions.

Proof of Proposition 4.1 (0 ≤ ΣQ ≤ 1): Take (72) and (59) and see that (i) if 0 ≤ ε < 1
2

[respectively, ε > 1], then hH
lL > 1 ∧ hH

lL → ∞ ⇒ N∗, Q∗ → ∞ [⇒ N∗, Q∗ → 0]
and hH

lL < 1 ∧ hH
lL → 0 ⇒ N∗, Q∗ → 0 [⇒ N∗, Q∗ → ∞], which, substituting in

(77a),yields ΣQ → 1 in either case; (ii) if 1
2 < ε < 1, then hH

lL > 1 ∧ hH
lL → ∞ ⇒

N∗ →∞, Q∗ → 0 and hH
lL < 1∧ hHlL → 0⇒ N∗ → 0, Q∗ →∞, which yields ΣQ → 0

in either case; (iii.a) if hHlL = 1,∀ε>0⇒ N∗, Q∗ = 1, which now yields ΣQ = 1
2 ; (iii.b)

if ε = 1
2 [ε = 1], then hH

lL > 1 ∧ hH
lL →∞⇒ N∗ →∞, Q∗ = 1 [⇒ N∗ = 1, Q∗ → 0]

and hH
lL < 1 ∧ hH

lL → 0 ⇒ N∗ → 0, Q∗ = 1 [⇒ N∗ = 1, Q∗ → ∞], which yields
ΣQ → 1

2 . Q.E.D.

Proof of Proposition 4.2 (1
2 ≤ ΣX ≤ 1): Take (72) and (74) and see that (i)if 0 ≤ ε < 1

[respectively, ε > 1], then hH
lL > 1 ∧ hH

lL → ∞ ⇒ N∗, X∗ → ∞ [⇒ N∗, X∗ → 0]
39The generalisation of the concentration index to M technological sectors is straightforward: ΣM ≡

M

Σiuioi, de�ned in the interval 0 ≤ ΣM ≤ 1, with the lower and upper boundaries corresponding to
the extreme concentration cases, similarly to the case of M = 2, and ΣM = 1

M
corresponding to the

uniform distribution across sectors.
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and hH
lL < 1 ∧ hH

lL → 0 ⇒ N∗, X∗ → 0 [⇒ N∗, X∗ → ∞], which, substituting

in (77b),yields ΣX → 1 in either case; and (ii) if hH
lL = 1, ∀ε>0 ∨ ε = 1, ∀hH

lL
>0⇒

N∗, X∗ = 1, which yields ΣX = 1
2 . Q.E.D.

Figure 3.1, below, depicts the concentration index, de�ned in terms of the �market shares�
uH ≡ QH

Q and oH ≡ NH
N . Panel (b) represents a correspondence between ΣQ and uH ,

where: (uH = 1; ΣQ = 1), if oH = 1; (uH = 1; ΣQ = 0), if oH = 0; (uH = 0; ΣQ = 1),
if oH = 1; and (uH = 0; ΣQ = 0), if oH = 0. A similar characterisation applies to the
correspondence between ΣQ and oH in panel (c).

Figure 3.1 - Concentration index and �market shares�

Figure 3.2, below, relates the concentration index with the relative labour endowment.
Panel (a) depicts the case of ε 6= 1, for ΣX , and 0 ≤ ε < 1

2 and ε > 1, for ΣQ. Panel (b)
depicts the case of 1

2 < ε < 1, for ΣQ. Observe that the concentration index exhibits a

symmetric behaviour with respect to hH
lL in geometric terms, i.e., if we de�ne the function

Σ ≡ Σ
(
hH
lL

)
, for a given ε, then it can be shown that Σ

(
hH
lL

)
= Σ

((
hH
lL

)−1
)
.40 On the

other hand, it can also be shown that the higher σ and γ, the less pronounced is the
rate of change of Σ with respect to hH

lL , through the impact of σ and γ on N∗ (see (72),
together with (77a) and (77b)).

Figure 3.2 - Concentration index and relative labour endowment

40First note, from (59) and (72) in the text, that
((

hH
lL

)−1
)1−2ε

= 1
Q∗ and

((
hH
lL

)−1
) 1−ε
σ+γ+1

= 1
N∗ .

Second, let Σ 1
Q

=
1

Q∗·N∗ +1

1
Q∗·N∗ + 1

Q∗ + 1
N∗ +1

. Finally, multiply both numerator and denominator by Q∗ ·N∗,

to get Σ 1
Q

= 1+Q∗·N∗
1+Q∗·N∗+Q∗+N∗ = ΣQ (see (77a)).
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